Synonyms
Definitions
Introduction of Minkowski-Lorentz spaces to simplify Euclidean 2- or 3-dimensional problems.
Introduction
In this entry, the authors propose a survey on Minkowski-Lorentz spaces which are a generalization of the space-time used in Einstein’s theory, equipped of the nondegenerate indefinite quadratic form

where (x,y,z) are the spacial components of the vector \( \overrightarrow{u} \) and t is the time component of \( \overrightarrow{u} \) and c is the constant of the speed of light. Computer Graphics computations involving families of circles or spheres are simplified in this space. One can note that a canal surface of the usual 3D Euclidean affine space is represented in the suitable Minkowski-Lorentz space by a curve. Moreover, in order to realize a G1-blend between two canal surfaces, it is enough to make a G1 join between two curves. From an affine Euclidean space of dimension nwhere its usual value in Computer...
This is a preview of subscription content, access via your institution.
References
Bécar, J.P.: Forme (BR) des coniques et de leurs faisceaux. Ph.D. thesis, Université de Valenciennes et de Hainaut-Cambrésis, LIMAV, Décembre 1997
Dorst, L., Fontijne, D., Mann, S.: Geometric Algebra for Computer Science: An Object Oriented Approach to Geometry. Morgan Kaufmann Publishers, San Francisco, CA, USA (2007)
Fiorot, J.C., Jeannin, P.: Courbes et surfaces rationnelles, vol. RMA 12. Masson, Université du Michigan (1989)
Fiorot, J.C., Jeannin, P.: Courbes splines rationnelles, applications à la CAO, vol. RMA 24. Masson, Université du Michigan (1992)
Foufou, S., Garnier, L.: Dupin cyclide blends between quadric surfaces for shape modeling. Comput. Graph. Forum. 23(3), 321–330 (2004)
Garnier, L., Bécar, J.-P.: Mass points, Bézier curves and conics: a survey. In: Eleventh International Workshop on Automated Deduction in Geometry, Proceedings of ADG 2016, pp. 97–116. Strasbourg, June 2016. http://ufrsciencestech.u-bourgogne.fr/~garnier/publications/adg2016/
Garnier, L., Bécar, J.-P., Druoton, L.: Canal surfaces as Bézier curves using mass points. Comput. Aided Geom. Des. 54, 15–34 (2017)
Goldman, R.: On the algebraic and geometric foundations of computer graphics. ACM Trans. Graph. 21(1), 52–86 (2002)
Langevin, R., Solanes, G.: The geometry of canal surfaces and the length of curves in de sitter space. Adv. Geom. 11(4), 585–601 (2011)
Langevin, R., Sifre, J.-C., Druoton, L., Garnier, L., Paluszny, M.: Finding a cyclide given three contact conditions. Comput. Appl. Math. 34, 1–18 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this entry
Cite this entry
Garnier, L., Bécar, JP., Druoton, L., Fuchs, L., Morin, G. (2018). Theory of Minkowski-Lorentz Spaces. In: Lee, N. (eds) Encyclopedia of Computer Graphics and Games. Springer, Cham. https://doi.org/10.1007/978-3-319-08234-9_111-1
Download citation
DOI: https://doi.org/10.1007/978-3-319-08234-9_111-1
Received:
Accepted:
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08234-9
Online ISBN: 978-3-319-08234-9
eBook Packages: Springer Reference Computer SciencesReference Module Computer Science and Engineering