Induction and Maintenance Immunosuppression in Intestinal Transplantation

  • Georgi Atanasov
  • Andreas Pascher
Reference work entry
Part of the Organ and Tissue Transplantation book series (OTT)


Intestinal and multivisceral transplantation are highly complex and challenging procedures for patients with irreversible and complicated intestinal failure. In recent years, significant improvements in patient and graft survival have been achieved. To date, these results correspond to similar survival rates for patients without life-threatening complications on parenteral nutrition. Graft immunogenicity is a major hurdle and graft rejection remains a potentially life threatening complication after ITX.

Due to significantly improved survival rates, the use of induction therapy for patients undergoing ITX has become standard practice. Lymphocyte depleting agents and interleukin 2 receptor antagonists are commonly used in this setting. The introduction of tacrolimus to clinical practice almost 30 years ago revolutionized the field of ITX and contributed significantly to clinical establishment of this procedure. Combination with antiproliferative agents may turn out to stabilize long-term transplant survival.

Traditional treatment for acute rejection comprises bolus steroids and lymphocyte depletion. Clinical experience has been gained with the use of TNFα-inhibitors in certain states of allograft rejection and inflammation, respectively. However, antibody-mediated mechanisms in intestine rejection have achieved increasing attention.

Experimental research and clinical trials are required to elucidate underlying biologic mechanisms and optimize and identify indications for use for novel immunosuppressive strategies targeting cytokines, B-cells, plasma cells, and complement.


Intestinal transplantation Multivisceral transplantation Immunosuppression Biologicals Allograft rejection Allograft enteropathy Induction immunosuppression TNF-alpha-Inhibitors 



Acute cellular rejection


Antibody-mediated rejection


Antigen presenting cells






Cyclosporine A


Donor-specific antibodies


Epstein barr virus


Graft versus host disease


Human leukocyte antigen


Inflammatory bowel disease


International intestinal transplant


IL-2/IL-2 receptor


Ischemia reperfusion


Intestinal transplantation


Intravenous immunoglobulins


Monoclonal antibody


Mycophenolate mofetil


Mammalian target of rapamycin


Multivisceral transplantation


Nucleotide oligomerization domain


Organ Procurement and Transplantation Network


Posttransplant lymphoproliferative disease


Scientific Registry of Transplant Recipients


Toll-like receptors


Competing Interests

The authors declare that they have no competing interests.


  1. Abu-Elmagd K, Fung J, McGhee W et al (2000) The efficacy of daclizumab for intestinal transplantation: preliminary report. Transplant Proc 32(6):1195–1196CrossRefPubMedPubMedCentralGoogle Scholar
  2. Abu-Elmagd KM, Costa G, Bond GJ et al (2009a) Five hundred intestinal and multivisceral transplantations at a single center: major advances with new challenges. Ann Surg 250(4):567–581PubMedGoogle Scholar
  3. Abu-Elmagd KM, Costa G, Bond GJ et al (2009b) Evolution of the immunosuppressive strategies for the intestinal and multivisceral recipients with special reference to allograft immunity and achievement of partial tolerance. Transpl Int 22(1):96–109CrossRefPubMedGoogle Scholar
  4. Abu-Elmagd KM, Wu G, Costa G et al (2012) Preformed and de novo donor specific antibodies in visceral transplantation: long-term outcome with special reference to the liver. Am J Transplant 12:3047–3060CrossRefPubMedGoogle Scholar
  5. Alegre M-L, Chen L, Wang T et al (2009) Antagonistic effects of toll-like receptor signaling and bacterial infections on transplantation tolerance. Transplantation 87(9):S77–S79CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ashton-Chess J, Giral M, Brouard S et al (2007) Spontaneous operational tolerance after immunosuppressive drug withdrawal in clinical renal allotransplantation. Transplantation 84:1215–1219CrossRefPubMedGoogle Scholar
  7. Beniaminovitz A, Itescu S, Lietz K et al (2000) Prevention of rejection in cardiac transplantation by blockade of the interleukin-2 receptor with a monoclonal antibody. N Eng J Med 342(9):613–619 23Google Scholar
  8. Bland PW, Bailey M (1998) Immunology of the small intestine. Transplant Proc 30:2560–2561CrossRefPubMedGoogle Scholar
  9. Brayman K (2007) New insights into the mechanisms of action of thymoglobulin. Transplantation 84:S3–S4CrossRefGoogle Scholar
  10. Brock MV, Borja MC, Ferber L et al (2001) Induction therapy in lung transplantation: a prospective, controlled clinical trial comparing OKT3, anti-thymocyte globulin, and daclizumab. J Heart Lung Transplant 20(12):1282–1290 26Google Scholar
  11. Buhaescu I, Segall L, Goldsmith D et al (2005) New immunosuppressive therapies in renal transplantation: monoclonal antibodies. J Nephrol 18:529–536PubMedGoogle Scholar
  12. Calne R, Friend P, Moffat S et al (1998) Prope tolerance, perioperative campath IH, and low-dose cyclosporine monotherapy in renal allograft recipients. Lancet 351:1701CrossRefPubMedGoogle Scholar
  13. Carreno MR, Kato T, Weppler D et al (2001) Induction therapy with daclizumab as part of the immunosuppressive regimen in human small bowel and multiorgan transplants. Transplant Proc 33(1–2):1015–1017 22Google Scholar
  14. Chen L, Wang T, Zhou P et al (2006) TLR engagement prevents transplantation tolerance. Am J Transplant 6(10):2282–2291CrossRefPubMedGoogle Scholar
  15. de Serre NP, Canioni D, Lacaille F et al (2008) Evaluation of C4d deposition and circulating antibody in small bowel transplantation. Am J Transplant 8:1290–1296CrossRefPubMedGoogle Scholar
  16. Dick AA, Horslen S (2012) Antibody-mediated rejection after intestinal transplantation. Curr Opin Organ Transplant 17(3):250–257CrossRefPubMedGoogle Scholar
  17. Dunn TB, Noreen H, Gillingham K et al (2011) Revisiting traditional risk factors for rejection and graft loss after kidney transplantation. Am J Transplant 11:2132–2143CrossRefPubMedPubMedCentralGoogle Scholar
  18. Dyer MJ, Hale G, Hayhoe FG et al (1989) Effects of CAMPATH-1 antibodies in vivo in patients with lymphoid malignancies: influence of antibody isotype. Blood 73(6):1431–1439PubMedGoogle Scholar
  19. Eskandary F, Wahrmann M, Mühlbacher J et al (2016) Complement inhibition as potential new therapy for antibody-mediated rejection. Transpl Int 29(4):392–402CrossRefPubMedGoogle Scholar
  20. Esposito E, Cuzzocrea S (2009) TNF-α as a therapeutic target in inflammatory diseases, ischemia-reperfusion injury and trauma. Curr Med Chem 16(24):3152–3167CrossRefPubMedGoogle Scholar
  21. Fan J, Tryphonopoulos P, Tekin A et al (2015) Eculizumab salvage therapy for antibody-mediated rejection in a desensitization-resistant intestinal re-transplant patient. Am J Transplant 15(7):1995–2000CrossRefPubMedGoogle Scholar
  22. Farmer DG, McDiarmid SV, Kuniyoshi J et al (1994) Intragraft expression of messenger RNA for interleukin-6 and TNF-alpha is a predictor of rat small intestine transplant rejection. J Surg Res 57:138–142CrossRefPubMedGoogle Scholar
  23. Farmer DG, McDiarmid SV, Yersiz H et al (2002) Outcomes after intestinal transplantation: a single-center experience over a decade. Transplant Proc 34(3):896–897CrossRefPubMedGoogle Scholar
  24. Fishbein TM, Florman S, Gondolesi G et al (2002) Intestinal transplantation before and after the introduction of sirolimus. Transplantation 73(10):1538–1542CrossRefPubMedGoogle Scholar
  25. Fishbein TM, Kaufman SS, Florman SS et al (2003) Isolated intestinal transplantation: proof of clinical efficacy. Transplantation 76(4):636–640CrossRefPubMedGoogle Scholar
  26. Fishbein T, Novitsky G, Mishra L et al (2008) NOD2-expressing bone marrow derived cells appear to regulate epithelial innate immunity of the transplanted human small intestine. Gut 57:323–330CrossRefPubMedGoogle Scholar
  27. Gabardi S, Tullius SG, Krenzien F (2015) Understanding alterations in drug handling with aging: a focus on the pharmacokinetics of maintenance immunosuppressants in the elderly. Curr Opin Organ Transplant 20(4):424–430CrossRefPubMedGoogle Scholar
  28. Garcia M, Weppler D, Mittal N et al (2004) Campath-1H immunosuppressive therapy reduces incidence and intensity of acute rejection in intestinal and multivisceral transplantation. Transplant Proc 36(2):323–324CrossRefPubMedGoogle Scholar
  29. Garrity ER Jr, Villanueva J, Bhorade SM et al (2001) Low rate of acute lung allograft rejection after the use of daclizumab, an interleukin 2 receptor antibody. Transplantation 71(6):773–777CrossRefPubMedGoogle Scholar
  30. Gerlach UA, Schoenemann C, Lachmann N et al (2011a) Salvage therapy for refractory rejection and persistence of donor-specific antibodies after intestinal transplantation using the proteasome inhibitor bortezomib. Transpl Int 24(5):e43–e45CrossRefPubMedGoogle Scholar
  31. Gerlach UA, Koch M, Mueller HP et al (2011b) Tumor necrosis factor alpha inhibitors as immunomodulatory antirejection agents after intestinal transplantation. Am J Transplant 11:1041–1050CrossRefPubMedGoogle Scholar
  32. Gerlach UA, Atanasov G, Wallenta L et al (2014a) Short-term TNF-alpha inhibition reduces short-term and long-term inflammatory changes post-ischemia/reperfusion in rat intestinal transplantation. Transplantation 97(7):732–739CrossRefPubMedGoogle Scholar
  33. Gerlach UA, Lachmann N, Sawitzki B et al (2014b) Clinical relevance of the de novo production of anti-HLA antibodies following intestinal and multivisceral transplantation. Transpl Int 27(3):280–289CrossRefPubMedGoogle Scholar
  34. Goulet O, Lacaille F, Colomb V et al (2002) Intestinal transplantation in children: Paris experience. Transplant Proc 34(5):1887–1888CrossRefPubMedGoogle Scholar
  35. Goulet O, Damotte D, Sarnacki S (2005) Liver-induced immune tolerance in recipients of combined liver-intestine transplants. Transplant Proc 37:1689–1690CrossRefPubMedGoogle Scholar
  36. Grant D, Abu-Elmagd K, Reves J et al (2003) Report of the intestine transplant registry: a new era has dawned. Ann Surg 241:604–613Google Scholar
  37. Grant D, Abu-Elmagd K, Mazariegos G et al (2015) Intestinal transplant registry report: global activity and trends. Am J Transplant 15(1):210–219CrossRefPubMedGoogle Scholar
  38. Hale G, Bunjes D, Wiesneth M et al (1986) Ex vivo T-cell depletion with the monoclonal antibody Campath-1 plus human complement effectively prevents acute graft-versus-host disease in allogeneic bone marrow transplantation. Br J Haematol 64(3):479–486CrossRefPubMedGoogle Scholar
  39. Hale G, Jacobs P, Wood L et al (2000) CD52 antibodies for prevention of graft-versus-host disease and graft rejection following transplantation of allogeneic peripheral blood stem cells. Bone Marrow Transplant 26(1):69–76CrossRefPubMedGoogle Scholar
  40. Heit W, Bunjes D, Wiesneth M, Schmeiser T, Arnold R, Hale G, Waldmann H, Heimpel H (1986) Ex vivo T-cell depletion with the monoclonal antibody Campath-1 plus human complement effectively prevents acute graft-versus-host disease in allogeneic bone marrow transplantation. Br J Haematol 64(3):479–86Google Scholar
  41. Hering BJ, Kandaswamy R, Ansite JD et al (2005) Single-donor, marginal dose islet transplantation in patients with type 1 diabetes. JAMA 293:830–835CrossRefPubMedGoogle Scholar
  42. Hershberger RE, Starling RC, Eisen HJ et al (2005) Daclizumab to prevent rejection after cardiac transplantation. N Engl J Med 352(26):2705–2713 24Google Scholar
  43. Hourmant M, Cesbron-Gautier A, Terasaki PI et al (2005) Frequency and clinical implications of development of donor-specific and non donor-specific HLA antibodies after kidney transplantation. J Am Soc Nephrol 16:2804–2812CrossRefPubMedGoogle Scholar
  44. ITR (2014) 2013 bi annual report. In: Grant D (ed) Intestinal transplant registry. Intestinal Transplant Association, TorontoGoogle Scholar
  45. Kawai T, Cosimi B, Spitzer TR et al (2008) HLA-mismatched renal transplantation without maintenance immunosuppression. N Engl J Med 358:353–361CrossRefPubMedPubMedCentralGoogle Scholar
  46. Kelly DA (2006) Current issues in pediatric transplantation. Pediatr Transplant 10:712–720CrossRefPubMedGoogle Scholar
  47. Kirk AD, Hale DA, Mannon RB et al (2003) Results from a human renal allograft tolerance trial evaluating the humanized CD52-specific monoclonal antibody alemtuzumab (CAMPATH-1H). Transplantation 76:120–129CrossRefPubMedGoogle Scholar
  48. Knechtle SJ, Pirsch JD, Fechner J Jr et al (2003) Campath-1H induction plus rapamycin monotherapy for renal transplantation: results of a pilot study. Am J Transplant 3:722–730CrossRefPubMedGoogle Scholar
  49. Kobashigawa J, David K, Morris J et al (2005) Daclizumab is associated with decreased rejection and no increased mortality in cardiac transplant patients receiving MMF, cyclosporine, and corticosteroids. Transplant Proc 37(2):1333–1339 25Google Scholar
  50. Krenzien F, ElKhal A, Quante M et al (2015) A rationale for age-adapted immunosuppression in organ transplantation. Transplantation 99(11):2258–2268CrossRefPubMedPubMedCentralGoogle Scholar
  51. Kubal C, Mangus R, Saxena R et al (2015) Prospective monitoring of donor-specific anti-HLA antibodies after intestine/multivisceral transplantation: significance of de novo antibodies. Transplantation 99(8):e49–e56CrossRefPubMedGoogle Scholar
  52. Last date of access 1 Apr 2016
  53. Last date of access 1 Apr 2016
  54. Lauro A, Bagni C, Zanfi S et al (2013a) Mortality after steroid-resistant acute cellular rejection and chronic rejection episodes in adult intestinal transplants: report from a single center in induction/preconditioning era. Transplant Proc 45:2032–2033CrossRefPubMedGoogle Scholar
  55. Lauro A, Zanfi C, Bagni A et al (2013b) Induction therapy in adult intestinal transplantation: reduced incidence of rejection with “2-dose” alemtuzumab protocol. Clin Transplant 27(4):567–570CrossRefPubMedGoogle Scholar
  56. Lee PC, Zhu L, Terasaki PI et al (2009) HLA-specific antibodies developed in the first year posttransplant are predictive of chronic rejection and renal graft loss. Transplantation 88:568–574CrossRefPubMedGoogle Scholar
  57. Lefaucheur C, Nochy D, Hill GS et al (2007) Determinants of poor graft outcome in patients with antibody-mediated acute rejection. Am J Transplant 7:832–841CrossRefPubMedGoogle Scholar
  58. Lodhi SA, Lamb KE, Meier-Kriesche HU (2011) Solid organ allograft survival improvement in the United States: the long-term does not mirror the dramatic short-term success. Am J Transplant 11(6):1226–1235CrossRefPubMedGoogle Scholar
  59. López-García P, Calvo Pulido J et al (2014) Histologic evaluation of post-implantation immediate C4d deposition in 13 intestinal grafts: correlation with cell-based crossmatching, cold ischemia time, and preservation injury. Transplant Proc 46(6):2099–2101CrossRefPubMedGoogle Scholar
  60. Loupy A, Suberbielle-Boissel C, Hill GS et al (2009) Outcome of subclinical antibody-mediated rejection in kidney transplant recipients with preformed donor-specific antibodies. Am J Transplant 9:2561–2570CrossRefPubMedGoogle Scholar
  61. Mao Q, Terasaki PI, Cai J et al (2007) Extremely high association between appearance of HLA antibodies and failure of kidney grafts in a five year longitudinal study. Am J Transplant 7:864–871CrossRefPubMedGoogle Scholar
  62. Matsumoto CS, Zasloff MA, Fishbein TM (2014) Chronic mucosal inflammation/inflammatory bowel disease-like inflammation after intestinal transplantation: where are we now? Curr Opin Organ Transplant 19(3):276–280CrossRefPubMedGoogle Scholar
  63. Mazariegos GV, Sindhi R, Thomson AW et al (2006) Clinical tolerance following liver transplantation: long term results and future prospects. Transpl Immunol 17:114–119CrossRefPubMedGoogle Scholar
  64. Minneci PC (2014) Intestinal transplantation: an overview. Pathophysiology 21(1):119–122CrossRefPubMedGoogle Scholar
  65. Mueller AR, Platz KP, Heckert C et al (1998) The extracellular matrix: an early target of preservation/reperfusion injury and acute rejection after small bowel transplantation. Transplantation 65:770–776CrossRefPubMedGoogle Scholar
  66. Murase N, Starzl TE, Tanabe M et al (1995) Variable chimerism, graft versus host disease, and tolerance after different kinds of cell and whole organ transplantation from Lewis to Brown-Norway rats. Transplantation 60:158–171CrossRefPubMedPubMedCentralGoogle Scholar
  67. Newell KA, He G, Hart J et al (1997) Treatment with either anti-CD4 or anti-CD8 monoclonal antibodies blocks alphabeta T cell-mediated rejection of intestinal allografts in mice. Transplantation 64(7):959–965CrossRefPubMedGoogle Scholar
  68. Nishida S, Levi D, Kato T et al (2002) Ninety-five cases of intestinal transplantation at the University of Miami. J Gastrointest Surg 6(2):233–239CrossRefPubMedGoogle Scholar
  69. Pascher A, Klupp J (2005) Biologics in the treatment of transplant rejection and ischemia/reperfusion injury: new applications for TNFa inhibitors? BioDrugs 19:211–231CrossRefPubMedGoogle Scholar
  70. Pascher A, Radke C, Dignass A et al (2003) Successful infliximab treatment of steroid and OKT3-refractory acute cellular rejection in two patients after intestinal transplantation. Transplantation 76:615–618CrossRefPubMedGoogle Scholar
  71. Pech T, Finger T, Fujishiro J et al (2010) Perioperative infliximab application ameliorates acute rejection associated inflammation after intestinal transplantation. Am J Transplant 10:2431–2441CrossRefPubMedGoogle Scholar
  72. Pirenne J, Kawai M (2004) Tolerogenic protocols for intestinal transplantation. Transpl Immunol 13:131–137CrossRefPubMedGoogle Scholar
  73. Pirenne J, Kawai M (2006) The protective effect of the liver: does it apply to the bowel too? Transplantation 81:978–979CrossRefPubMedGoogle Scholar
  74. Rebello P, Hale G (2002) Pharmacokinetics of CAMPATH-1H: assay development and validation. J Immunol Methods 260:285CrossRefPubMedGoogle Scholar
  75. Rebello PR, Hale G, Friend PJ et al (1999) Anti-globulin responses to rat and humanized CAMPATH-1 monoclonal antibody used to treat transplant rejection. Transplantation 68(9):1417–1420CrossRefPubMedGoogle Scholar
  76. Reyes J, Mazariegos GV, Bond GM et al (2002) Pediatric intestinal transplantation: historical notes, principles and controversies. Pediatr Transplant 6(3):193–207CrossRefPubMedGoogle Scholar
  77. Robb RJ, Munck A, Smith KA (1981) T cell growth factor receptors quantitation, specificity, and biological relevance. J Exp Med 154(5):1455–1474CrossRefPubMedPubMedCentralGoogle Scholar
  78. Rowan W, Tite J, Topley P et al (1998) Cross-linking of the CAMPATH-1 antigen (CD52) mediates growth inhibition in human B- and T-lymphoma cell lines, and subsequent emergence of CD52-deficient cells. Immunology 95(3):427–436CrossRefPubMedPubMedCentralGoogle Scholar
  79. Ruiz P, Garcia M, Pappas P et al (2003) Mucosal vascular alterations in isolated small-bowel allografts: relationship to humoral sensitization. Am J Transplant 3:43–49CrossRefPubMedGoogle Scholar
  80. Scandling JD, Busque S, Dejbakhsh-Jones S et al (2008) Tolerance and chimerism after renal and hematopoietic-cell transplantation. N Engl J Med 358:362–368CrossRefPubMedGoogle Scholar
  81. Smith JM, Skeans MA, Horslen SP et al (2008) OPTN/SRTR 2013 annual data report: intestine. Am J Transplant 15(2):1–16Google Scholar
  82. Starzl TE, Kaupp HA Jr (1960) Mass homotransplantations of abdominal organs in dogs. Surg Forum 11:28–30PubMedPubMedCentralGoogle Scholar
  83. Stuart FP, Leventhal JR, Kaufman DB et al (2002) Alemtuzumab facilitates prednisone free immunosuppression in kidney transplant recipients with no early rejection. Am J Transplant 2(3):397–348Google Scholar
  84. Sudan D (2014) The current state of intestine transplantation: indications, techniques, outcomes and challenges. Am J Transplant 14(9):1976–1984CrossRefPubMedGoogle Scholar
  85. Takeshita T, Asao H, Ohtani K et al (1992) Cloning of the gamma chain of the human IL-2 receptor. Science 257(5068):379–382CrossRefPubMedGoogle Scholar
  86. Taniguchi T, Minami Y (1993) The IL-2/IL-2 receptor system: a current overview. Cell 73(1):5–8CrossRefPubMedGoogle Scholar
  87. Todo S, Tzakis AG, Abu-Elmagd K et al (1992) Intestinal transplantation in composite visceral grafts or alone. Ann Surg 216:223–233CrossRefPubMedPubMedCentralGoogle Scholar
  88. Touzot M, Obada EN, Beaudreuil S et al (2014) Complement modulation in solid-organ transplantation. Transplant Rev 28(3):119–125CrossRefGoogle Scholar
  89. Trevizol AP, David AI, Dias ER et al (2012) Intestinal and multivisceral transplantation immunosuppression protocols – literature review. Transplant Proc 44(8):2445–2448CrossRefPubMedGoogle Scholar
  90. Troxell ML, Higgins JP, Kambham N et al (2006) Evaluation of C4d staining in liver and small intestine allografts. Arch Pathol Lab Med 130:1489–1496PubMedGoogle Scholar
  91. Tzakis AG, Kato T, Nishida S et al (2003a) Preliminary experience with campath 1H (C1H) in intestinal and liver transplantation. Transplantation 75:1227–1231CrossRefPubMedGoogle Scholar
  92. Tzakis AG, Kato T, Nishida S et al (2003b) Alemtuzumab (Campath-1H) combined with tacrolimus in intestinal and multivisceral transplantation. Transplantation 75(9):1512–1517CrossRefPubMedGoogle Scholar
  93. Vianna RM, Mangus RS, Fridell JA et al (2008) Induction immunosuppression with thymoglobulin and rituximab in intestinal and multivisceral transplantation. Transplantation 85(9):1290–1293CrossRefPubMedGoogle Scholar
  94. Vincenti F (2003) New monoclonal antibodies in renal transplantation. Minerva Urol Nefrol 55:57–66PubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of SurgeryCharité – Universitätsmedizin BerlinBerlinGermany

Section editors and affiliations

  • George Mazariegos
    • 1
  • Dale Zecca
    • 2
  • Jennifer Melvin
    • 3
  1. 1.Hillman Center for Pediatric TransplantationChildren’s Hospital of Pittsburgh of UPMCPittsburghUSA
  2. 2.Children’s Hospital of PittsburghPittsburghUSA
  3. 3.Children’s Hospital of PittsburghPittsburghUSA

Personalised recommendations