Supply Chain Management

  • Helena Ramalhinho LourençoEmail author
  • Martı́n Gómez Ravetti
Living reference work entry


Supply chain management (SCM) is related to the management of all activities along a network of organizations to provide a good or a service to final customers. The efficiency of these activities can have a great impact on customer‘s satisfaction and cost reduction. However, SCM is not just the sum of activities along the supply chain but, instead, it must consider the organization, supervision, and control of all activities in the chain from an integrated and collaborative perspective aiming to provide a competitive advantage. From this point of view, an increase in the dimension and complexity of the decision problems involved is expected, as several actors with different goals must be considered to administrate efficiently the activities within the supply chain. This chapter briefly reviews the main concepts of SCM, identifying relevant decision and optimization problems and discussing possible solution approaches. Heuristics and metaheuristics are two of the best optimization tools to be used in solving and providing business insights for the SCM problems. This chapter also describes some successful metaheuristic approaches to SCM and it examines future research trends. A large number of applications of metaheuristics to SCM integrating new subjects, such as open and big data, smart cities, and online decision-making, just to mention a few, are foreseen.


Supply chain management Optimization problems Metaheuristics 



H.R. has been supported by the Spanish Ministry of Economy and Competitiveness (TRA2013-48180-C3-P). M.G.R. acknowledges supports from the National Council for Scientific and Technological Development (CNPq) and FAPEMIG.


  1. 1.
    Cordeau JF, Gendreau M, Laporte G et al (2002) A guide to vehicle routing heuristics. J Oper Res Soc 53:512–522. doi:10.1057/palgrave/jors/2601319CrossRefzbMATHGoogle Scholar
  2. 2.
  3. 3.
    Simchi-Levi D, Kaminsky P, Simchi-Levi E (2003) Designing and managing the supply chain: concepts, strategies and case studies. McGraw-Hill/Irwin, BostonzbMATHGoogle Scholar
  4. 4.
    Janvier-James AM (2011) A new introduction to supply chains and supply chain management: definitions and theories perspective. Int Bus Res 5:194–207. doi:10.5539/ibr.v5n1p194CrossRefGoogle Scholar
  5. 5.
    Ullrich CA (2014) Issues in supply chain scheduling and contracting. Springer Fachmedien Wiesbad, Wiesbaden. doi:10.1007/978-3-658-03769-7Google Scholar
  6. 6.
    Johnson JC, Wood DF, Wardlow DL, Murphy Paul R (1999) Contemporary logistics. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  7. 7.
    Akdogan AA, Demirtas O (2014) Managerial role in strategic supply chain management. Procedia Soc Behav Sci 150:1020–1029. doi:10.1016/j.sbspro.2014.09.114CrossRefGoogle Scholar
  8. 8.
    Lambert DM, Cooper MC (2000) Issues in supply chain management. Ind Mark Manag 29:65–83. doi:10.1016/S0019-8501(99)00113-3CrossRefGoogle Scholar
  9. 9.
    Chopra S, Meindl P (2016) Supply chain management, 6th edn. Pearson Education, BostonGoogle Scholar
  10. 10.
    Chen IJ, Paulraj A (2004) Understanding supply chain management: critical research and a theoretical framework. Int J Prod Res 42:131–163. doi:10.1080/00207540310001602865CrossRefzbMATHGoogle Scholar
  11. 11.
    Farahani RZ, Rezapour S, Drezner T, Fallah S (2014) Competitive supply chain network design: an overview of classifications, models, solution techniques and applications. Omega 45:92–118. doi:10.1016/ Scholar
  12. 12.
    Melo MT, Nickel S, Saldanha-da-Gama F (2009) Facility location and supply chain management – a review. Eur J Oper Res 196:401–412. doi:10.1016/j.ejor.2008.05.007MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gosling J, Purvis L, Naim MM (2010) Supply chain flexibility as a determinant of supplier selection. Int J Prod Econ 128:11–21. doi:10.1016/j.ijpe.2009.08.029CrossRefGoogle Scholar
  14. 14.
    Tachizawa EM, Gimenez C (2010) Supply flexibility strategies in Spanish firms: results from a survey. Int J Prod Econ 124:214–224. doi:10.1016/j.ijpe.2009.11.020CrossRefGoogle Scholar
  15. 15.
    Chikán A (2011) Managers’ view of a new inventory paradigm. Int J Prod Econ 133:54–59. doi:10.1016/j.ijpe.2010.09.009CrossRefGoogle Scholar
  16. 16.
    Morton T, Pentico D (1993) Heuristic scheduling systems. Wiley, New YorkGoogle Scholar
  17. 17.
    Chan L, Shen Z, Simchi-levi D, Swann JL (2004) Coordination of pricing and inventory decisions: a survey and classification. In: Simchi-Levi D, Wu SD, Shen ZM (eds) Handbook of quantitative supply chain analysis modeling in the E-business era. Kluwer Academic, Boston, pp 335–392CrossRefGoogle Scholar
  18. 18.
    Coelho LC, Cordeau J, Laporte G (2014) Thirty years of inventory routing. Transp Sci 48:1–19. doi:10.1287/trsc.2013.0472CrossRefGoogle Scholar
  19. 19.
    Andersson H, Hoff A, Christiansen M et al (2010) Industrial aspects and literature survey: combined inventory management and routing. Comput Oper Res 37:1515–1536. doi:10.1016/j.cor.2009.11.009MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Diabat A (2014) Hybrid algorithm for a vendor managed inventory system in a two-echelon supply chain. Eur J Oper Res 238:114–121. doi:10.1016/j.ejor.2014.02.061MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Mateus G, Ravetti MG, de Souza M, Valeriano T (2010) Capacitated lot sizing and sequence dependent setup scheduling: an iterative approach for integration. J Sched 13:245–259. doi:10.1007/s10951-009-0156-2MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kreipl S, Dickersbach JT (2008) Scheduling coordination problems in supply chain planning. Ann Oper Res 161:103–122. doi:10.1007/s10479-007-0293-yCrossRefzbMATHGoogle Scholar
  23. 23.
    Kreipl S, Pinedo M (2009) Planning and scheduling in supply chains: an overview of issues in practice. Prod Oper Manag 13:77–92. doi:10.1111/j.1937-5956.2004.tb00146.xCrossRefGoogle Scholar
  24. 24.
    Martínez-Jurado PJ, Moyano-Fuentes J (2013) Lean management, supply chain management and sustainability: a literature review. J Clean Prod 85:134–150. doi:10.1016/j.jclepro.2013.09.042CrossRefGoogle Scholar
  25. 25.
    Demir E, Bektaş T, Laporte G (2014) A review of recent research on green road freight transportation. Eur J Oper Res 237:775–793. doi:10.1016/j.ejor.2013.12.033CrossRefzbMATHGoogle Scholar
  26. 26.
    Devika K, Jafarian A, Nourbakhsh V (2014) Designing a sustainable closed-loop supply chain network based on triple bottom line approach: a comparison of metaheuristics hybridization techniques. Eur J Oper Res 235:594–615. doi:10.1016/j.ejor.2013.12.032MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Yücesan E (2007) Impact of information technology on supply chain management. In: Jung H, Jeong B, Chen FF (eds) Trends in supply chain design and management SE – 6. Springer, London, pp 127–148CrossRefGoogle Scholar
  28. 28.
    Simchi-Levi D, Kaminsky P, Simchi-Levi E (2003) Designing and managing the supply chain: concepts, strategies and case studies. McGraw-Hill/Irwin, BostonzbMATHGoogle Scholar
  29. 29.
    Hazen BT, Boone CA, Ezell JD, Jones-Farmer LA (2014) Data quality for data science, predictive analytics, and big data in supply chain management: an introduction to the problem and suggestions for research and applications. Int J Prod Econ 154:72–80. doi:10.1016/j.ijpe.2014.04.018CrossRefGoogle Scholar
  30. 30.
    Kot S (2014) Principles of global supply chain management. Faculty of Management, Czestochowa University of TechnologyGoogle Scholar
  31. 31.
    Croxton KL, García-Dastugue SJ, Lambert DM, Rogers DS (2001) The supply chain management processes. Int J Logist Manag 12:13–36CrossRefGoogle Scholar
  32. 32.
    Sánchez D, Amodeo L, Prins C (2009) Meta-heuristic approaches for multi-objective simulation-based optimization in supply chain inventory management. Lect Notes Comput Sci 5484:798–807. doi:10.1007/978-1-84996-119-6_9CrossRefGoogle Scholar
  33. 33.
    Duan Q, Liao TW (2013) A new age-based replenishment policy for supply chain inventory optimization of highly perishable products. Int J Prod Econ 145:658–671. doi:10.1016/j.ijpe.2013.05.020CrossRefGoogle Scholar
  34. 34.
    Zolfaghari S, Quan V, El-Bouri A, Khashayardoust M (2010) Application of a genetic algorithm to staff scheduling in retail sector. Int J Ind Syst Eng 5:20–47. doi:10.1504/IJISE.2010.029755Google Scholar
  35. 35.
    Wang KJ, Chen MJ (2009) Cooperative capacity planning and resource allocation by mutual outsourcing using ant algorithm in a decentralized supply chain. Expert Syst Appl 36:2831–2842. doi:10.1016/j.eswa.2008.01.089CrossRefGoogle Scholar
  36. 36.
    Laporte G (2009) Fifty years of vehicle routing. Transp Sci 43:408–416. doi:10.1287/trsc.1090.0301CrossRefGoogle Scholar
  37. 37.
    Yeun LC, Ismail WANR, Omar K, Zirour M (2008) Vehicle routing problem: models and solutions. J Qual Meas Anal 4:205–218Google Scholar
  38. 38.
    Cordeau JF, Gendreau M, Hertz A et al (2005) New heuristics for the vehicle routing problem. In: Langevin A, Riopel D (eds) Logistics systems: design and optimization. Kluwer Academic, Boston pp 279–297CrossRefGoogle Scholar
  39. 39.
    Kumar SN, Panneerselvam R (2012) A survey on the vehicle routing problem and its variants. Intell Inf Manag 4:66–74. doi:10.4236/iim.2012.43010Google Scholar
  40. 40.
    Vidal T, Crainic TG, Gendreau M, Prins C (2013) Heuristics for multi-attribute vehicle routing problems: a survey and synthesis. Eur J Oper Res 231:1–21. doi:10.1016/j.ejor.2013.02.053MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Pérez-Bernabeu E, Juan AA, Faulin J, Barros B (2015) Horizontal cooperation in road transportation: a multi- depot case illustrating savings in distances and pollutant emissions. Int Trans Oper Res 22:585-606. doi:10.1111/itor.12130MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Juan AA, Faulin J, Pérez-Bernabeu E, Jozefowiez N (2014) Horizontal cooperation in vehicle routing problems with backhauling and environmental criteria. Proc Soc Behav Sci 111:1133–1141. doi:10.1016/j.sbspro.2014.01.148CrossRefGoogle Scholar
  43. 43.
    Lin C, Choy KL, Ho GTS et al (2014) Survey of green vehicle routing problem: past and future trends. Expert Syst Appl 41:1118–1138. doi:10.1016/j.eswa.2013.07.107CrossRefGoogle Scholar
  44. 44.
    Erdoǧan S, Miller-Hooks E (2012) A green vehicle routing problem. Transp Res Part E Logist Transp Rev 48:100–114. doi:10.1016/j.tre.2011.08.001CrossRefGoogle Scholar
  45. 45.
    Schmid V, Doerner KF, Laporte G (2013) Rich routing problems arising in supply chain management. Eur J Oper Res 224:435–448. doi:10.1016/j.ejor.2012.08.014MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Pisinger D, Ropke S (2007) A general heuristic for vehicle routing problems. Comput Oper Res 34:2403–2435. doi:10.1016/j.cor.2005.09.012MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Liu S, Papageorgiou LG (2013) Multiobjective optimisation of production, distribution and capacity planning of global supply chains in the process industry. Omega Int J Manag Sci 41:369–381. doi:10.1016/ Scholar
  48. 48.
    Afshin Mansouri S, Gallear D, Askariazad MH (2012) Decision support for build-to-order supply chain management through multiobjective optimization. Int J Prod Econ 135:24–36. doi:10.1016/j.ijpe.2010.11.016CrossRefGoogle Scholar
  49. 49.
    Chu CH, Luh YP, Li TC, Chen H (2009) Economical green product design based on simplified computer-aided product structure variation. Comput Ind 60:485–500. doi:10.1016/j.compind.2009.02.003CrossRefGoogle Scholar
  50. 50.
    Vieira P, Vieira SM, Sousa JMC et al (2014) Designing closed-loop supply chains with nonlinear dimensioning factors using ant colony optimization. Soft Comput doi:10.1007/s00500-014-1405-7Google Scholar
  51. 51.
    Griffis SE, Bell JE, Closs DJ (2012) Metaheuristics in logistics and supply chain management. J Bus Logist 33:90–106. doi:10.1111/j.0000-0000.2012.01042.xCrossRefGoogle Scholar
  52. 52.
    Calvete HI, Galé C, Iranzo JA (2014) Planning of a decentralized distribution network using bilevel optimization. Omega 49:30–41. doi:10.1016/ Scholar
  53. 53.
    Delavar MR, Hajiaghaei-Keshteli M, Molla-Alizadeh-Zavardehi S (2010) Genetic algorithms for coordinated scheduling of production and air transportation. Expert Syst Appl 37:8255–8266. doi:10.1016/j.eswa.2010.05.060CrossRefGoogle Scholar
  54. 54.
    Eskandarpour M, Masehian E, Soltani R, Khosrojerdi A (2014) A reverse logistics network for recovery systems and a robust metaheuristic solution approach. Int J Adv Manuf Technol 74:1393–1406. doi:10.1007/s00170-014-6045-7CrossRefGoogle Scholar
  55. 55.
    Boukherroub T, Ruiz A, Guinet A, Fondrevelle J (2015) An integrated approach for sustainable supply chain planning. Comput Oper Res 54:180–194. doi:10.1016/j.cor.2014.09.002CrossRefzbMATHGoogle Scholar
  56. 56.
    Brandenburg M, Govindan K, Sarkis J, Seuring S (2014) Quantitative models for sustainable supply chain management: developments and directions. Eur J Oper Res 233:299–312. doi:10.1016/j.ejor.2013.09.032MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Ahi P, Searcy C (2013) A comparative literature analysis of definitions for green and sustainable supply chain management. J Clean Prod 52:329–341. doi:10.1016/j.jclepro.2013.02.018CrossRefGoogle Scholar
  58. 58.
    Seuring S (2013) A review of modeling approaches for sustainable supply chain management. Decis Support Syst 54:1513–1520. doi:10.1016/j.dss.2012.05.053CrossRefGoogle Scholar
  59. 59.
    Lourenço H, Ribeiro R (2012) Strategies for an integrated distribution problem strategies for an integrated distribution problem. In: Montoya-Torres JR, Juan AA, Huaccho L et al (eds) Hybrid algorithms for service, computing and manufacturing systems: routing and scheduling solutions. IGI Global Books, Hershey, pp 98–121CrossRefGoogle Scholar
  60. 60.
    Ribeiro R, Lourenço HR (2005) A new model and heuristic for a multi-period inventory-routing problem. In: Decision science institute of international conference, Barcelona, pp 805–815Google Scholar
  61. 61.
    Caceres-Cruz J, Arias P, Guimarans D et al (2014) Rich vehicle routing problem: survey. ACM Comput Surv 47:1–28. doi:10.1145/2666003CrossRefGoogle Scholar
  62. 62.
    Cardona-Valdés Y, Álvarez A, Pacheco J (2014) Metaheuristic procedure for a bi-objective supply chain design problem with uncertainty. Transp Res B Methodol 60:66–84. doi:10.1016/j.trb.2013.11.010CrossRefGoogle Scholar
  63. 63.
    Rego N, Claro J, Pinho de Sousa J (2014) A hybrid approach for integrated healthcare cooperative purchasing and supply chain configuration. Health Care Manag Sci 17:303–20. doi:10.1007/s10729-013-9262-yCrossRefGoogle Scholar
  64. 64.
    Cavique L (2007) A scalable algorithm for the market basket analysis. J Retail Consum Serv 14:400–407. doi:10.1109/EPIA.2005.341294CrossRefGoogle Scholar
  65. 65.
    Martins P, Ladrón A, Ramalhinho H (2014) Maximum cut-clique problem: ILS heuristics and a data analysis application. Int Trans Oper Res. doi:10.1111/itor.12120zbMATHGoogle Scholar
  66. 66.
    Sadeghia A, Alem-Tabriza A, Zandieha M (2011) Product portfolio planning: a metaheuristic-based simulated annealing algorithm. Int J Prod Res 49:2327–2350. doi:10.1080/00207540903329338CrossRefGoogle Scholar
  67. 67.
    April J, Glover F, Kelly J, Laguna M (2001) Simulation/optimization using “Real-World” applications. In: Proceedings of 2001 winter simulation conference, Arlington, pp 134–138Google Scholar
  68. 68.
    Ngai EWT, Xiu L, Chau DCK (2009) Application of data mining techniques in customer relationship management: a literature review and classification. Expert Syst Appl 36:2592–2602. doi:10.1016/j.eswa.2008.02.021CrossRefGoogle Scholar
  69. 69.
    Grasas A, Juan AA, Lourenço HR (2014) SimILS: a simulation-based extension of the iterated local search metaheuristic for stochastic combinatorial optimization. J Simul doi:10.1057/jos.2014.25Google Scholar
  70. 70.
    Juan AA, Faulin J, Grasman SE et al (2015, in press) A review of Simheuristics: extending metaheuristics to deal with stochastic optimization problems. Oper Res Perspect 2:62–72. doi:10.1016/j.orp.2015.03.001Google Scholar
  71. 71.
    Giménez C, Lourenço HR (2004) E-supply chain management: review, implications and directions for future research. In: EUROMA INSEAD, Fontainebleau, pp 1021–1031Google Scholar
  72. 72.
    Davenport TH (2014) Big data at work dispelling the myths, uncovering the opportunities. Harvard Business School Press, BostonGoogle Scholar
  73. 73.
    Nam T, Pardo TA (2011) Conceptualizing smart city with dimensions of technology, people, and institutions. In: Proceedings of the 12th annual international digital government research conference on digital government innovation in challenging times – dg.o ’11, p 282. doi:10.1145/2037556.2037602Google Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Helena Ramalhinho Lourenço
    • 1
    Email author
  • Martı́n Gómez Ravetti
    • 2
  1. 1.Universitat Pompeu FabraBarcelonaSpain
  2. 2.Universidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations