Skip to main content

Network Optimization

  • Living reference work entry
  • First Online:
  • 233 Accesses

Abstract

Several real-world problems can be modeled as graph problems, and then graph algorithms and theories that have been evolved for decades can be applied for solving the problem at hand. Interestingly, many of these graph problems can be solved polynomially, while small changes in a problem definition turn the problem difficult to be solved. In this chapter, we explore this path from polynomial network problems to NP-hard ones. Along the chapter, we visit several problems, dedicating more extended discussions to two real-world problems: the weight setting problem, originated from telecommunication networks, and the virtual network embedded problem, a recent stated optimization problem from the computer network area. For these two problems, we discuss their heuristic resolution, since only small instances of them can be solved exactly within a reasonable amount of time.

This is a preview of subscription content, log in via an institution.

References

  1. Ahuja RK, Orlin JB, Magnanti TL (1993) Network flows: theory, algorithms, and applications. Prentice-Hall, Upper Saddle River

    Google Scholar 

  2. Alkmim G, Batista D, da Fonseca N (2013) Mapping virtual networks onto substrate networks. J Internet Serv Appl 4:1–15

    Google Scholar 

  3. Bays L, Oliveira R, Buriol L, Barcellos M, Gaspary L (2012) Security-aware optimal resource allocation for virtual network embedding. In: Network and service management (CNSM), pp 378–384

    Google Scholar 

  4. Bays L, Oliveira R, Buriol L, Barcellos M, Gaspary L (2014) A heuristic-based algorithm for privacy-oriented virtual network embedding. In: 14th IEEE/IFIP network operations and management symposium (NOMS 2014), pp 1–8

    Google Scholar 

  5. Bley A (2011) An integer programming algorithm for routing optimization in ip networks. Algorithmica 60(1):21–45

    Google Scholar 

  6. Botero J, Hesselbach X, Duelli M, Schlosser D, Fischer A, de Meer H (2012) Energy efficient virtual network embedding. IEEE Commun Lett 16(5):756–759

    Google Scholar 

  7. Broström P, Holmberg K (2006) Multiobjective design of survivable IP networks. Ann Oper Res 147:235–253

    Google Scholar 

  8. Buriol L, Resende M, Ribeiro C, Thorup M (2005) A hybrid genetic algorithm for the weight setting problem in OSPF/IS-IS routing. Networks 46:36–56

    Google Scholar 

  9. Buriol L, Resende M, Ribeiro C, Thorup M (2005) A hybrid genetic algorithm for the weight setting problem in OSPF/IS-IS routing. Networks 46(1):36–56

    Google Scholar 

  10. Buriol L, Resende M, Thorup M (2007) Survivable IP network desing with OSPF routing. Networks 49(1):51–64

    Google Scholar 

  11. Buriol L, Resende M, Thorup M (2008) Speeding up dynamic shortest-path algorithms. INFORMS J Comput 20:191–204

    Google Scholar 

  12. Cao W, Wang H, Liu L (2014) An ant colony optimization algorithm for virtual network embedding. In: Algorithms and architectures for parallel processing. Lecture notes in computer science, vol 8630, pp 299–309

    Google Scholar 

  13. Chowdhury N, Boutaba R (2010) A survey of network virtualization. Comput Netw 54(5):862–876

    Google Scholar 

  14. Chowdhury NMMK, Rahman MR, Boutaba R (2009) Virtual network embedding with coordinated node and link mapping. In: INFOCOM. IEEE, pp 783–791

    Google Scholar 

  15. Chowdhury M, Rahman M, Boutaba R (2012) ViNEYard: virtual network embedding algorithms with coordinated node and link mapping. IEEE/ACM Trans Netw 20(1):206–219

    Google Scholar 

  16. Ericsson M, Resende M, Pardalos P (2002) A genetic algorithm for the weight setting problem in OSPF routing. J Comb Optim 6:299–333

    Google Scholar 

  17. Even S, Itai A, Shamir A (1976) On the complexity of timetable and multicommodity flow problems. SIAM J Comput 5:691–703

    Google Scholar 

  18. Fajjari I, Aitsaadi N, Pujolle G, Zimmermann H (2011) Vne-ac: virtual network embedding algorithm based on ant colony metaheuristic. In: IEEE international conference on communications (ICC), pp 1–6

    Google Scholar 

  19. Feamster N, Gao L, Rexford J (2007) How to lease the internet in your spare time. SIGCOMM Comput Commun Rev 37(1):61–64

    Google Scholar 

  20. Fortz B, Thorup M (2000) Internet traffic engineering by optimizing OSPF weights. In: INFOCOM, pp 519–528

    Google Scholar 

  21. Fortz B, Thorup M (2004) Increasing internet capacity using local search. Comput Optim Appl 29(1):13–48

    Google Scholar 

  22. Goldberg A, Tarjan R (1988) A new approach to the maximum-flow problem. J ACM 35:921–940

    Google Scholar 

  23. Goldberg A, Kaplan H, Werneck R (2007) Better landmarks within reach. In: Workshop on experimental algorithms, pp 38–51

    Google Scholar 

  24. Guerzoni R, Trivisonno R, Vaishnavi I, Despotovic Z, Hecker A, Beker S, Soldani D (2014) A novel approach to virtual networks embedding for SDN management and orchestration. In: Network operations and management symposium (NOMS 2014). IEEE, pp 1–7

    Google Scholar 

  25. Hoffman A, Kruskal J (1956) Integral boundary points of convex polyhedra. Ann Math Stud 38:223–246

    Google Scholar 

  26. Houidi I, Louati W, Ameur W, Zeghlache D (2011) Virtual network provisioning across multiple substrate networks. Comput Netw 55(4):1011–1023

    Google Scholar 

  27. Inführ J, Raidl G (2011) Introducing the virtual network mapping problem with delay, routing and location constraints. In: Pahl J, Reiners T, VoßS (eds) Network optimization. Lecture notes in computer science, vol 6701. Springer, Berlin/Heidelberg, pp 105–117

    Google Scholar 

  28. Kleinberg J, Tardos E (2005) Algorithm design. Addison Wesley, Boston

    Google Scholar 

  29. Köhler E, Mühring R, Schilling H (2006) Fast point-to-point shortest path computations with arc-flags. In: 9th DIMACS implementation challenge

    Google Scholar 

  30. Lauther U (2006) An experimental evaluation of point-to-point shortest path calculation on roadnetworks with precalculated edge-flags. In: 9th DIMACS implementation challenge

    Google Scholar 

  31. Likhachev M, Ferguson D, Gordon G, Stentz A, Thrun S (2008) Anytime search in dynamic graphs. Artif Intell 172:1613–1643

    Google Scholar 

  32. Moura L (2015) Branch & price for the virtual network embedding problem. Master’s thesis, Federal University of Rio Grande do Sul, Porto Alegre

    Google Scholar 

  33. Moura L, Gaspary L, Buriol LS (2017) A branch-and-price algorithm for the single-path virtual network embedding problem. Networks Online 1–15. https://doi.org/10.1002/net.21798

  34. Orlin J (2013) Max flows in o(nm) time, or better. In: Proceedings of the forty-fifth annual ACM symposium on theory of computing, pp 765–774

    MATH  Google Scholar 

  35. Pioro M, Szentsi A, Harmatos J, Juttner A, Gajownicczek P, Kozdrowski S (2002) On open shortest path first related network optimization problems. Perform Eval 48(4):201–223

    Article  MATH  Google Scholar 

  36. Ramalingam G, Reps T (1996) An incremental algorithm for a generalization of the shortest-path problem. J Algorithms 21:267–305

    Article  MathSciNet  MATH  Google Scholar 

  37. Shamsi J, Brockmeyer M (2008) Efficient and dependable overlay networks. In: IEEE international symposium on parallel and distributed processing (IPDPS), pp 1–8

    Google Scholar 

  38. Stefanello F, Buriol L, Hirsch M, Pardalos P, Querido T, Resende M, Ritt M (2017) On the minimization of traffic congestion in road networks with tolls. Ann Oper Res 249:119–139

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana S. Buriol .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Buriol, L.S. (2018). Network Optimization. In: Martí, R., Panos, P., Resende, M. (eds) Handbook of Heuristics. Springer, Cham. https://doi.org/10.1007/978-3-319-07153-4_46-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07153-4_46-1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07153-4

  • Online ISBN: 978-3-319-07153-4

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics