Advertisement

Random-Key Genetic Algorithms

  • José Fernando Gonçalves
  • Mauricio G. C. Resende
Living reference work entry

Abstract

A random-key genetic algorithm is an evolutionary metaheuristic for discrete and global optimization. Each solution is encoded as an array of n random keys, where a random key is a real number, randomly generated, in the continuous interval [0, 1). A decoder maps each array of random keys to a solution of the optimization problem being solved and computes its cost. The algorithm starts with a population of p arrays of random keys. At each iteration, the arrays are partitioned into two sets, a smaller set of high-valued elite solutions and the remaining nonelite solutions. All elite elements are copied, without change, to the next population. A small number of random-key arrays (the mutants) are added to the population of the next iteration. The remaining elements of the population of the next iteration are generated by combining, with the parametrized uniform crossover of Spears and DeJong (On the virtues of parameterized uniform crossover. In: Proceedings of the fourth international conference on genetic algorithms, San Mateo, pp 230–236, 1991), pairs of arrays. This chapter reviews random-key genetic algorithms and describes an effective variant called biased random-key genetic algorithms.

Keywords

Random keys Biased Genetic algorithms 

Notes

Acknowledgements

The first author was partially supported by funds granted by the ERDF through the program COMPETE and by the Portuguese government through the FCT – Foundation for Science and Technology, project PTDC/ EGE-GES/ 117692/ 2010.

References

  1. 1.
    Aiex RM, Resende MGC, Ribeiro CC (2007) TTTPLOTS: a perl program to create time-to-target plots. Optim Lett 1:355–366MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Andrade DV, Buriol LS, Resende MGC, Thorup M (2006) Survivable composite-link IP network design with OSPF routing. In: Proceedings of the eighth INFORMS telecommunications conference, DallaszbMATHGoogle Scholar
  3. 3.
    Andrade CE, Miyazawa FK, Resende MGC (2013) Evolutionary algorithm for the k-interconnected multi-depot multi-traveling salesmen problem. In: Proceedings of genetic and evolutionary computation conference (GECCO). ACM, AmsterdamGoogle Scholar
  4. 4.
    Andrade CE, Miyazawa FK, Resende MGC, Toso RF (2013) Biased random-key genetic algorithms for the winner determination problem in combinatorial auctions. Technical report, AT&T Labs Research, Florham ParkGoogle Scholar
  5. 5.
    Andrade CE, Resende MGC, Karloff HJ, Miyazawa FK (2014) Evolutionary algorithms for overlapping correlation clustering. In: Proceedings of genetic and evolutionary computation conference (GECCO’14), Vancouver, pp 405–412Google Scholar
  6. 6.
    Bean JC (1994) Genetic algorithms and random keys for sequencing and optimization. ORSA J Comput 6:154–160CrossRefzbMATHGoogle Scholar
  7. 7.
    Breslau L, Diakonikolas I, Duffield N, Gu Y, Hajiaghayi M, Johnson DS, Karloff H, Resende MGC, Sen S (2011) Disjoint-path facility location: theory and practice. In: Proceedings of the thirteenth workshop of algorithm engineering and experiments (ALENEX11), San Francisco, pp 68–74Google Scholar
  8. 8.
    Buriol LS, Resende MGC, Ribeiro CC, Thorup M (2005) A hybrid genetic algorithm for the weight setting problem in OSPF/IS-IS routing. Networks 46:36–56MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Buriol LS, Resende MGC, Thorup M (2007) Survivable IP network design with OSPF routing. Networks 49:51–64MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Buriol LS, Hirsch MJ, Querido T, Pardalos PM, Resende MGC, Ritt M (2010) A biased random-key genetic algorithm for road congestion minimization. Optim Lett 4:619–633MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Chan FTS, Tibrewal RK, Prakash A, Tiwari MK (2015) A biased random key genetic algorithm approach for inventory-based multi-item lot-sizing problem. Proc Inst Mech Eng Part B J Eng Manuf 229(1):157–171CrossRefGoogle Scholar
  12. 12.
    Coco AA, Noronha TF, Santos AC (2012) A biased random-key genetic algorithm for the robust shortest path problem. In: Proceedings of global optimization workshop (GO2012), Natal, pp 53–56Google Scholar
  13. 13.
    Coco AA, Abreu JCA Jr, Noronha TF, Santos AC (2014) An integer linear programming formulation and heuristics for the minmax relative regret robust shortest path problem. J Glob Optim 60(2):265–287MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Duarte A, Martí R, Resende MGC, Silva RMA (2014) Improved heuristics for the regenerator location problem. Int Trans Oper Res 21:541–558MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ericsson M, Resende MGC, Pardalos PM (2002) A genetic algorithm for the weight setting problem in OSPF routing. J Comb Optim 6:299–333MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Festa P (2013) A biased random-key genetic algorithm for data clustering. Math Biosci 245:76–85MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Festa P, Gonçalves JF, Resende MGC, Silva RMA (2010) Automatic tuning of GRASP with path-relinking heuristics with a biased random-key genetic algorithm. In: Festa P (ed) Experimental algorithms. Lecture notes in computer science, vol 6049. Springer, Berlin/Heidelberg, pp 338–349CrossRefGoogle Scholar
  18. 18.
    Fontes DBMM, Gonçalves JF (2007) Heuristic solutions for general concave minimum cost network flow problems. Networks 50:67–76MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Fontes DBMM, Gonçalves JF (2013) A multi-population hybrid biased random key genetic algorithm for hop-constrained trees in nonlinear cost flow networks. Optim Lett 7(6): 1303–1324MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Gonçalves JF (2007) A hybrid genetic algorithm-heuristic for a two-dimensional orthogonal packing problem. Eur J Oper Res 183:1212–1229MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Gonçalves JF, Almeida J (2002) A hybrid genetic algorithm for assembly line balancing. J Heuristics 8:629–642CrossRefGoogle Scholar
  22. 22.
    Gonçalves JF, Beirão NC (1999) Um algoritmo genético baseado em chaves aleatórias para sequenciamento de operações. Revista Associação Portuguesa de Desenvolvimento e Investigação Operacional 19:123–137Google Scholar
  23. 23.
    Gonçalves JF, Resende MGC (2004) An evolutionary algorithm for manufacturing cell formation. Comput Ind Eng 47:247–273CrossRefGoogle Scholar
  24. 24.
    Gonçalves JF, Resende MGC (2011) Biased random-key genetic algorithms for combinatorial optimization. J Heuristics 17:487–525CrossRefGoogle Scholar
  25. 25.
    Gonçalves JF, Resende MGC (2011) A parallel multi-population genetic algorithm for a constrained two-dimensional orthogonal packing problem. J Comb Optim 22:180–201MathSciNetCrossRefGoogle Scholar
  26. 26.
    Gonçalves JF, Resende MGC (2012) A parallel multi-population biased random-key genetic algorithm for a container loading problem. Comput Oper Res 29:179–190MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Gonçalves JF, Resende MGC (2013) A biased random-key genetic algorithm for a 2D and 3D bin packing problem. Int J Prod Econ 145:500–510CrossRefGoogle Scholar
  28. 28.
    Gonçalves JF, Resende MGC (2014) An extended Akers graphical minimization method with a biased random-key genetic algorithm for job-shop scheduling. Int Tran Oper Res 21:215–246CrossRefzbMATHGoogle Scholar
  29. 29.
    Gonçalves JF, Resende MGC (2015) A biased random-key genetic algorithm for the unequal area facility layout problem. Eur J Oper Res 246(1):86–107MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Gonçalves JF, Mendes JJM, Resende MGC (2005) A hybrid genetic algorithm for the job shop scheduling problem. Eur J Oper Res 167:77–95MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Gonçalves JF, Mendes JJM, Resende MGC (2008) A genetic algorithm for the resource constrained multi-project scheduling problem. Eur J Oper Res 189:1171–1190CrossRefzbMATHGoogle Scholar
  32. 32.
    Gonçalves JF, Resende MGC, Mendes JJM (2011) A biased random-key genetic algorithm with forward-backward improvement for the resource constrained project scheduling problem. J Heuristics 17:467–486CrossRefGoogle Scholar
  33. 33.
    Gonçalves JF, Resende MGC, Costa MD (2016) A biased random-key genetic algorithm for the minimization of open stacks problem. Int Trans Oper Res 23(1–2):25–46MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Gonçalves JF, Resende MGC, Toso RF (2014) An experimental comparison of biased and unbiased random-key genetic algorithms. Pesquisa Operacional 34:143–164CrossRefGoogle Scholar
  35. 35.
    Goulart N, de Souza SR, Dias LGS, Noronha TF (2011) Biased random-key genetic algorithm for fiber installation in optical network optimization. In: IEEE congress on evolutionary computation (CEC 2011). IEEE, New Orleans, pp 2267–2271CrossRefGoogle Scholar
  36. 36.
    Grasas A, Lourenço HR, Pessoa LS, Resende MGC, Caballé I, Barba N (2014) On the improvement of blood sample collection at clinical laboratories. BMC Health Serv Res 14:Article 12Google Scholar
  37. 37.
    Lalla-Ruiz E, González-Velarde JL, Melián-Batista B, Moreno-Vega JM (2014) Biased random key genetic algorithm for the tactical berth allocation problem. Appl Soft Comput 22:60–76CrossRefGoogle Scholar
  38. 38.
    Marques I, Captivo ME, Vaz Pato M (2014) Scheduling elective surgeries in a portuguese hospital using a genetic heuristic. Oper Res Health Care 3:59–72CrossRefGoogle Scholar
  39. 39.
    Mendes JJM, Gonçalves JF, Resende MGC (2009) A random key based genetic algorithm for the resource constrained project scheduling problem. Comput Oper Res 36:92–109MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Morán-Mirabal LF, González-Velarde JL, Resende MGC (2013) Automatic tuning of GRASP with evolutionary path-relinking. In: Proceedings of hybrid metaheuristics 2013 (HM 2013). Lecture notes in computer science, vol 7919. Springer, Ischia, pp 62–77Google Scholar
  41. 41.
    Morán-Mirabal LF, González-Velarde JL, Resende MGC, Silva RMA (2013) Randomized heuristics for handover minimization in mobility networks. J Heuristics 19:845–880CrossRefGoogle Scholar
  42. 42.
    Morán-Mirabal LF, González-Velarde JL, Resende MGC (2014) Randomized heuristics for the family traveling salesperson problem. Int Trans Oper Res 21:41–57MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Moreira MCO, Ritt M, Costa AM, Chaves AA (2012) Simple heuristics for the assembly line worker assignment and balancing problem. J Heuristics 18:505–524CrossRefGoogle Scholar
  44. 44.
    Noronha TF, Resende MGC, Ribeiro CC (2011) A biased random-key genetic algorithm for routing and wavelength assignment. J Glob Optim 50:503–518CrossRefGoogle Scholar
  45. 45.
    OpenMP (2013) http://openmp.org/wp/. Last visted on 11 May 2013
  46. 46.
    Pedrola O, Careglio D, Klinkowski M, Velasco L, Bergman K, Solé-Pareta J (2013) Metaheuristic hybridizations for the regenerator placement and dimensioning problem in sub-wavelength switching optical networks. Eur J Oper Res 224:614–624MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Pedrola O, Ruiz M, Velasco L, Careglio D, González de Dios O, Comellas J (2013) A GRASP with path-relinking heuristic for the survivable IP/MPLS-over-WSON multi-layer network optimization problem. Comput Oper Res 40:3174–3187MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Reis R, Ritt M, Buriol LS,, Resende MGC (2011) A biased random-key genetic algorithm for OSPF and DEFT routing to minimize network congestion. Int Trans Oper Res 18:401–423MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Resende MGC (2012) Biased random-key genetic algorithms with applications in telecommunications. TOP 20:120–153MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    Resende MGC, Ribeiro CC (2011) Restart strategies for GRASP with path-relinking heuristics. Optim Lett 5:467–478MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    Resende MGC, Toso RF, Gonçalves JF, Silva RMA (2012) A biased random-key genetic algorithm for the Steiner triple covering problem. Optim Lett 6:605–619MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Roque LAC, Fontes DBMM, Fontes FACC (2014) A hybrid biased random key genetic algorithm approach for the unit commitment problem. J Comb Optim 28:140–166MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    Ruiz M, Pedrola O, Velasco L, Careglio D, Fernández-Palacios J, Junyent G (2011) Survivable IP/MPLS-over-WSON multilayer network optimization. J Optic Commun Netw 3:629–640CrossRefGoogle Scholar
  54. 54.
    Ruiz E, Albareda-Sambola M, Fernández E, Resende MGC (2013) A biased random-key genetic algorithm for the capacitated minimum spanning tree problem. Technical report, AT&T Labs Research Technical, Florham ParkGoogle Scholar
  55. 55.
    Silva RMA, Resende MGC, Pardalos PM, Gonçalves JF (2012) Biased random-key genetic algorithm for bound-constrained global optimization. In: Proceedings of global optimization workshop (GO2012), Natal, pp 133–136Google Scholar
  56. 56.
    Silva RMA, Resende MGC, Pardalos PM (2014) Finding multiple roots of box-constrained system of nonlinear equations with a biased random-key genetic algorithm. J Glob Optim 60(2):289–306MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Silva RMA, Resende MGC, Pardalos PM (2015) A Python/C++ library for bound-constrained global optimization using biased random-key genetic algorithm. J Comb Optim 30(3):710–728MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Silva RMA, Resende MGC, Pardalos PM, Facó JLD (2013) Biased random-key genetic algorithm for non-linearly constrained global optimization. In: Proceedings of the 2013 IEEE congress on evolutionary computation (CEC), Cancun, pp 2201–2206Google Scholar
  59. 59.
    Spears WM, DeJong KA (1991) On the virtues of parameterized uniform crossover. In: Proceedings of the fourth international conference on genetic algorithms, San Mateo, pp 230–236Google Scholar
  60. 60.
    Stefanello F, Buriol LS, Hirsch MJ, Pardalos PM, Querido T, Resende MGC, Ritt M (2013) On the minimization of traffic congestion in road networks with tolls. Technical report, AT&T Labs Research, Florham ParkGoogle Scholar
  61. 61.
    Tangpattanakul P, Jozefowiez N, Lopez P (2012) Multi-objective optimization for selecting and scheduling observations by agile earth observing satellites. In: Parallel problem solving from nature – PPSN XII. Lecture notes in computer science, vol 7492. Springer, Berlin/New York, pp 112–121Google Scholar
  62. 62.
    Toso RF, Resende MGC (2015) A C++ application programming interface for biased random key genetic algorithms. Optim Methods Softw 30(1):81–93CrossRefGoogle Scholar
  63. 63.
    Valente JMS, Gonçalves JF (2008) A genetic algorithm approach for the single machine scheduling problem with linear earliness and quadratic tardiness penalties. Comput Oper Res 35:3696–3713MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Valente JMS, Gonçalves JF, Alves RAFS (2006) A hybrid genetic algorithm for the early/tardy scheduling problem. Asia-Pac J Oper Res 23:393–405MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • José Fernando Gonçalves
    • 1
  • Mauricio G. C. Resende
    • 2
  1. 1.INESC TEC and Faculdade de EconomiaUniversidade do PortoPortoPortugal
  2. 2.Mathematical Optimization and PlanningAmazon.com, Inc.SeattleUSA

Personalised recommendations