Abstract
This chapter presents a literature review of the main advances in the field of hyper-heuristics, since the publication of a survey paper in 2013. The chapter demonstrates the most recent advances in hyper-heuristic foundations, methodologies, theory, and application areas. In addition, a simple illustrative selection hyper-heuristic framework is developed as a case study. This is based on the well-known Iterated Local Search algorithm and is presented to provide a tutorial style introduction to some of the key basic issues. A brief discussion about the implementation process in addition to the decisions that had to be made during the implementation is presented. The framework implements an action selection model that operates on the perturbation stage of the Iterated Local Search algorithm to adaptively select among various low-level perturbation heuristics. The performance and efficiency of the developed framework is evaluated across six well-known real-world problem domains.
Keywords
- Hyper-heuristics
- Heuristics
- Meta-heuristics
- Evolutionary computation
- Optimization
- Search
- Machine learning
- Multi-objective optimization
- Combinatorial optimization
- Black box optimization
- Dynamic optimization
- Scheduling
- Timetabling
- Packing
- Iterated local search
This is a preview of subscription content, access via your institution.
Buying options


References
(2011) CHeSC 2011: cross-domain heuristic search challenge. http://www.asap.cs.nott.ac.uk/external/chesc2011/. Accessed 25 Mar 2015
(2011) HyFlex competition instance summary. http://www.asap.cs.nott.ac.uk/external/chesc2011/reports/CHeSCInstanceSummary.pdf. Accessed 25 Mar 2015
(2014) CHeSC 2014: the second cross-domain heuristic search challenge. http://www.hyflex.org/chesc2014/. Accessed 25 Mar 2015
(2014) HyFlex API: hyper-heuristics flexible framework API. http://www.hyflex.org/. Accessed 25 Mar 2015
Adriaensen S, Brys T, Nowe A (2014) Designing reusable metaheuristic methods: a semi-automated approach. In: 2014 IEEE congress on evolutionary computation (CEC), pp 2969–2976. https://doi.org/10.1109/CEC.2014.6900575
Adriaensen S, Brys T, Nowé A (2014) Fair-share ILS: a simple state-of-the-art iterated local search hyperheuristic. In: Proceedings of the 2014 conference on genetic and evolutionary computation (GECCO’14). ACM, New York, pp 1303–1310. https://doi.org/10.1145/2576768.2598285
Akar E, Topcuoglu HR, Ermis M (2014) Hyper-heuristics for online UAV path planning under imperfect information. In: Esparcia-Alcázar AI, Mora AM (eds) Applications of evolutionary computation. Lecture notes in computer science. Springer, Berlin/Heidelberg, pp 741–752
Alanazi F, Lehre PK (2014) Runtime analysis of selection hyper-heuristics with classical learning mechanisms. In: 2014 IEEE congress on evolutionary computation (CEC), pp 2515–2523. https://doi.org/10.1109/CEC.2014.6900602, 00000
Aleti A, Moser I (2013) Entropy-based adaptive range parameter control for evolutionary algorithms. In: Proceedings of the 15th annual conference on genetic and evolutionary computation (GECCO’13). ACM, New York, pp 1501–1508. https://doi.org/10.1145/2463372.2463560
Aleti A, Moser I (2013) Studying feedback mechanisms for adaptive parameter control in evolutionary algorithms. In: 2013 IEEE congress on evolutionary computation (CEC), pp 3117–3124. https://doi.org/10.1109/CEC.2013.6557950
Aleti A, Moser I, Meedeniya I, Grunske L (2013) Choosing the appropriate forecasting model for predictive parameter control. Evol Comput 22(2):319–349. https://doi.org/10.1162/EVCO_a_00113
Allen J (2014) A framework for hyper-heuristic optimisation of conceptual aircraft structural designs. Doctoral, Durham University
Allen JG, Coates G, Trevelyan J (2013) A hyper-heuristic approach to aircraft structural design optimization. Struct Multidiscip Optim 48(4):807–819. https://doi.org/10.1007/s00158-013-0928-3, 00001
Anwar K, Awadallah M, Khader A, Al-betar M (2014) Hyper-heuristic approach for solving nurse rostering problem. In: 2014 IEEE symposium on computational intelligence in ensemble learning (CIEL), pp 1–6. https://doi.org/10.1109/CIEL.2014.7015743
Anwar K, Khader AT, Al-Betar MA, Awadallah MA (2014) Development on harmony search hyper-heuristic framework for examination timetabling problem. In: Tan Y, Shi Y, Coello CAC (eds) Advances in swarm intelligence. Lecture notes in computer science, vol 8795. Springer International Publishing, Cham, pp 87–95
Aron R, Chana I, Abraham A (2015) A hyper-heuristic approach for resource provisioning-based scheduling in grid environment. J Supercomput 1–24. https://doi.org/10.1007/s11227-014-1373-9
Asta S, Özcan E (2014) An apprenticeship learning hyper-heuristic for vehicle routing in HyFlex. In: 2014 IEEE symposium on evolving and autonomous learning systems (EALS), pp 65–72. https://doi.org/10.1109/EALS.2014.7009505
Asta S, Özcan E (2014) A tensor-based approach to nurse rostering. In: 10th international conference on the practice and theory of automated timetabling (PATAT 2014), pp 442–445
Asta S, Özcan E (2015) A tensor-based selection hyper-heuristic for cross-domain heuristic search. Inf Sci 299:412–432. https://doi.org/10.1016/j.ins.2014.12.020
Asta S, Özcan E, Parkes AJ (2013) Batched mode hyper-heuristics. In: Nicosia G, Pardalos P (eds) Learning and intelligent optimization. Lecture notes in computer science. Springer, Berlin/Heidelberg, pp 404–409
Asta S, Özcan E, Parkes AJ, Etaner-Uyar S A (2013) Generalizing hyper-heuristics via apprenticeship learning. In: Middendorf M, Blum C (eds) Evolutionary computation in combinatorial optimization. Lecture notes in computer science, vol 7832. Springer, Berlin/Heidelberg, pp 169–178
Auer P, Cesa-Bianchi N, Fischer P (2002) Finite-time analysis of the multiarmed bandit problem. Mach Learn 47(2–3):235–256. https://doi.org/10.1023/A:1013689704352, 01559
Bäck T, Fogel DB, Michalewicz Z (eds) (1997) Handbook of evolutionary computation. Oxford University Press, New York
Banerjea-Brodeur M (2013) Selection hyper-heuristics for healthcare scheduling. PhD thesis, University of Nottingham
Barros RC, Basgalupp MP, Carvalho ACPLFd (2014) Investigating fitness functions for a hyper-heuristic evolutionary algorithm in the context of balanced and imbalanced data classification. Genet Program Evolvable Mach 1–41. https://doi.org/10.1007/s10710-014-9235-z
Bartz-Beielstein T, Lasarczyk C, Preuss M (2010) The sequential parameter optimization toolbox. In: Bartz-Beielstein T, Chiarandini M, Paquete L, Preuss M (eds) Experimental methods for the analysis of optimization algorithms. Springer, Berlin/Heidelberg, pp 337–362, 00031
Basgalupp MP, Barros RC, Barabasz T (2014) A grammatical evolution based hyper-heuristic for the automatic design of split criteria. In: Proceedings of the 2014 conference on genetic and evolutionary computation (GECCO’14). ACM, New York, pp 1311–1318. https://doi.org/10.1145/2576768.2598327
Battiti R, Protasi M (2001) Reactive local search for the maximum clique problem. Algorithmica 29(4):610–637
Battiti R, Brunato M, Mascia F (2009) Reactive search and intelligent optimization. Operations research/computer science interfaces series, vol 45. Springer, Boston, 00000
Boughaci D, Lassouaoui M (2014) Stochastic hyper-heuristic for the winner determination problem in combinatorial auctions. In: Proceedings of the 6th international conference on management of emergent digital EcoSystems (MEDES’14). ACM, New York, pp 11: 62–11:66. https://doi.org/10.1145/2668260.2668268
Branke J, Hildebrandt T, Scholz-Reiter B (2014) Hyper-heuristic evolution of dispatching rules: a comparison of rule representations. Evol Comput 1–29. https://doi.org/10.1162/EVCO_a_00131
Burke EK, Kendall G, Newall J, Hart E, Ross P, Schulenburg S (2003) Hyper-heuristics: an emerging direction in modern search technology. In: Glover F, Kochenberger GA (eds) Handbook of metaheuristics. International series in operations research & management science, vol 57. Springer, Boston, pp 457–474
Burke EK, Hyde MR, Kendall G, Ochoa G, Özcan E, Woodward JR (2009) Exploring hyper-heuristic methodologies with genetic programming. In: Mumford CL, Jain LC (eds) Computational intelligence. Intelligent systems reference library, vol 1. Springer, Berlin/Heidelberg, pp 177–201
Burke EK, Hyde M, Kendall G, Ochoa G, Özcan E, Woodward JR (2010) A classification of hyper-heuristic approaches. In: Gendreau M, Potvin JY (eds) Handbook of metaheuristics. International series in operations research & management science, vol 146. Springer, Boston, pp 449–468
Burke EK, Qu R, Soghier A (2012) Adaptive selection of heuristics for improving exam timetables. Ann Oper Res 218(1):129–145. https://doi.org/10.1007/s10479-012-1140-3
Burke EK, Gendreau M, Hyde M, Kendall G, Ochoa G, Özcan E, Qu R (2013) Hyper-heuristics: a survey of the state of the art. J Oper Res Soc 64(12):1695–1724. https://doi.org/10.1057/jors.2013.71
Castro OR, Pozo A (2014) A MOPSO based on hyper-heuristic to optimize many-objective problems. In: 2014 IEEE symposium on swarm intelligence (SIS), pp 1–8. https://doi.org/10.1109/SIS.2014.7011803
Chakhlevitch K, Cowling P (2008) Hyperheuristics: recent developments. In: Cotta C, Sevaux M, Sorensen K (eds) Adaptive and multilevel metaheuristics. Studies in computational intelligence, vol 136. Springer, Berlin/Heidelberg, pp 3–29
Consoli PA, Minku LL, Yao X (2014) Dynamic selection of evolutionary algorithm operators based on online learning and fitness landscape metrics. In: Dick G, Browne WN, Whigham P, Zhang M, Bui LT, Ishibuchi H, Jin Y, Li X, Shi Y, Singh P, Tan KC, Tang K (eds) Simulated evolution and learning. Lecture notes in computer science, vol 8886. Springer International Publishing, Cham, pp 359–370, 00000
Cowling P, Kendall G, Soubeiga E (2001) A hyperheuristic approach to scheduling a sales summit. In: Burke EK, Erben W (eds) Practice and theory of automated timetabling III. Lecture notes in computer science, vol 2079. Springer, Berlin/Heidelberg, pp 176–190
Crowston WBS (1963) Probabilistic and parametric learning combinations of local job shop scheduling rules. Carnegie Institute of Technology and Graduate School of Industrial Administration, Pittsburgh
Dong B, Jiao L, Wu J (2015) Graph-based hybrid hyper-heuristic channel scheduling algorithm in multicell networks. Trans Emerg Telecommun Tech n/a–n/a. https://doi.org/10.1002/ett.2923
Drake JH, Özcan E, Burke EK (2015) Modified choice function heuristic selection for the multidimensional knapsack problem. In: Sun H, Yang CY, Lin CW, Pan JS, Snasel V, Abraham A (eds) Genetic and evolutionary computing. Advances in intelligent systems and computing, vol 329. Springer International Publishing, Cham, pp 225–234
Eiben AE, Smit SK (2011) Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol Comput 1(1):19–31
Epitropakis MG, Plagianakos VP, Vrahatis MN (2009) Evolutionary adaptation of the differential evolution control parameters. In: IEEE congress on evolutionary computation (CEC’09), pp 1359–1366
Epitropakis MG, Tasoulis DK, Pavlidis NG, Plagianakos VP, Vrahatis MN (2012) Tracking differential evolution algorithms: an adaptive approach through multinomial distribution tracking with exponential forgetting. In: Maglogiannis I, Plagianakos V, Vlahavas I (eds) Artificial intelligence: theories and applications. Lecture notes in computer science, vol 7297. Springer, Berlin/Heidelberg, pp 214–222
Epitropakis MG, Tasoulis DK, Pavlidis NG, Plagianakos VP, Vrahatis MN (2012) Tracking particle swarm optimizers: an adaptive approach through multinomial distribution tracking with exponential forgetting. In: 2012 IEEE congress on evolutionary computation (CEC), pp 1–8
Epitropakis MG, Caraffini F, Neri F, Burke EK (2014) A Separability prototype for automatic memes with adaptive operator selection. In: 2014 IEEE symposium on foundations of computational intelligence (FOCI), pp 70–77. https://doi.org/10.1109/FOCI.2014.7007809
Feng L, Ong Y, Lim M, Tsang I (2014) Memetic search with inter-domain learning: a realization between CVRP and CARP. IEEE Trans Evol Comput PP(99):1–1. https://doi.org/10.1109/TEVC.2014.2362558
Fialho A (2010) Adaptive operator selection for optimization. Ph.D. thesis, Université Paris-Sud XI, Orsay
Fialho A, Costa LD, Schoenauer M, Sebag M (2010) Analyzing bandit-based adaptive operator selection mechanisms. Ann Math Artif Intell 60(1-2):25–64. https://doi.org/10.1007/s10472-010-9213-y, 00032
Fisher H, Thompson GL (1963) Probabilistic learning combinations of local job-shop scheduling rules. In: Muth JF, Thompson GL (eds) Industrial scheduling. Prentice-Hall, Englewood Cliffs, pp 225–251
Gong W, Fialho A, Cai Z (2010) Adaptive strategy selection in differential evolution. In: Proceedings of the 12th annual conference on genetic and evolutionary computation (GECCO’10). ACM, New York, pp 409–416
Grobler J, Engelbrecht A, Kendall G, Yadavalli VSS (2014) The entity-to-algorithm allocation problem: extending the analysis. In: 2014 IEEE symposium on computational intelligence in ensemble learning (CIEL), pp 1–8. https://doi.org/10.1109/CIEL.2014.7015744
Grobler J, Engelbrecht AP, Kendall G, Yadavalli VSS (2015) Heuristic space diversity control for improved meta-hyper-heuristic performance. Inf Sci 300:49–62. https://doi.org/10.1016/j.ins.2014.11.012
Güney IA, Küçük G, Özcan E (2013) Hyper-heuristics for performance optimization of simultaneous multithreaded processors. In: Gelenbe E, Lent R (eds) Information sciences and systems 2013. Lecture notes in electrical engineering, vol 264. Springer International Publishing, Cham, pp 97–106, 00001
Hart E, Sim K (2014) On the life-long learning capabilities of a NELLI*: a hyper-heuristic optimisation system. In: Bartz-Beielstein T, Branke J, Filipč B, Smith J (eds) Parallel problem solving from nature – PPSN XIII. Lecture notes in computer science, vol 8672. Springer International Publishing, Cham, pp 282–291
Hildebrandt T, Goswami D, Freitag M (2014) Large-scale simulation-based optimization of semiconductor dispatching rules. In: Proceedings of the 2014 winter simulation conference (WSC’14). IEEE Press, Piscataway, pp 2580–2590, 00000
Hollander M, Wolfe DA, Chicken E (2013) Nonparametric statistical methods, 3rd edn. Wiley, Hoboken
Hoos H, Stützle T (2004) Stochastic local search: foundations & applications. Morgan Kaufmann Publishers Inc., San Francisco, 01275
Hutter F, Hoos HH, Leyton-Brown K (2011) Sequential model-based optimization for general algorithm configuration. In: Coello CAC (ed) Learning and intelligent optimization. Lecture notes in computer science, vol 6683. Springer, Berlin/Heidelberg, pp 507–523, 00149
Jackson WG, Özcan E, John RI (2014) Fuzzy adaptive parameter control of a late acceptance hyper-heuristic. In: 2014 14th UK workshop on computational intelligence (UKCI), pp 1–8. https://doi.org/10.1109/UKCI.2014.6930167, 00000
Karafotias G, Hoogendoorn M, Eiben AE (2013) Why parameter control mechanisms should be benchmarked against random variation. In: 2013 IEEE congress on evolutionary computation (CEC), pp 349–355. https://doi.org/10.1109/CEC.2013.6557590
Karafotias G, Eiben AE, Hoogendoorn M (2014) Generic parameter control with reinforcement learning. In: Proceedings of the 2014 conference on genetic and evolutionary computation (GECCO’14). ACM, New York, pp 1319–1326. https://doi.org/10.1145/2576768.2598360
Karafotias G, Eiben E, Hoogendoorn M (2014) Generic parameter control with reinforcement learning. In: Genetic and evolutionary computation conference (GECCO’14), Vancouver, 12–16 July 2014, pp 1319–1326
Karafotias G, Hoogendoorn M, Eiben A (2014) Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans Evol Comput PP(99):1–1
Karafotias G, Hoogendoorn M, Eiben AE (2014) Parameter control in evolutionary algorithms: trends and challenges. IEEE Trans Evol Comput PP(99):1–1. https://doi.org/10.1109/TEVC.2014.2308294
Kheiri A, Özcan E (2014) Constructing constrained-version of magic squares using selection hyper-heuristics. Comput J 57(3):469–479. https://doi.org/10.1093/comjnl/bxt130, 00001
Kheiri A, Özcan E, Parkes AJ (2014) A stochastic local search algorithm with adaptive acceptance for high-school timetabling. Ann Oper Res https://doi.org/10.1007/s10479-014-1660-0
Kirkpatrick S, Gelatt CD, Vecchi MP (1983) Optimization by simulated annealing. Science 220(4598):671–680. https://doi.org/10.1126/science.220.4598.671, 00003
Koohestani B, Poli R (2014) Evolving an improved algorithm for envelope reduction using a hyper-heuristic approach. IEEE Trans Evol Comput 18(4):543–558. https://doi.org/10.1109/TEVC.2013.2281512, 00000
Koulinas G, Kotsikas L, Anagnostopoulos K (2014) A particle swarm optimization based hyper-heuristic algorithm for the classic resource constrained project scheduling problem. Inf Sci 277:680–693. https://doi.org/10.1016/j.ins.2014.02.155, 00008
Lassouaoui M, Boughaci D (2014) A choice function hyper-heuristic for the winner determination problem. In: Terrazas G, Otero FEB, Masegosa AD (eds) Nature inspired cooperative strategies for optimization (NICSO 2013). Studies in computational intelligence, vol 512. Springer International Publishing, Cham, pp 303–314
Lehre PK, Özcan E (2013) A runtime analysis of simple hyper-heuristics: to mix or not to mix operators. In: Proceedings of the twelfth workshop on foundations of genetic algorithms XII (FOGA XII’13). ACM, New York, pp 97–104. https://doi.org/10.1145/2460239.2460249, 00008
Li D, Li M, Meng X, Tian Y (2015) A hyperheuristic approach for intercell scheduling with single processing machines and batch processing machines. IEEE Trans Syst Man Cybern Syst 45(2):315–325. https://doi.org/10.1109/TSMC.2014.2332443
Li K, Fialho A, Kwong S, Zhang Q (2014) Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition. IEEE Trans Evol Comput 18(1):114–130. https://doi.org/10.1109/TEVC.2013.2239648
Li S (2013) Hyper-heuristic cooperation based approach for bus driver scheduling. Ph.D. thesis, Université de Technologie de Belfort-Montbeliard
Liao X, Li Q, Yang X, Zhang W, Li W (2007) Multiobjective optimization for crash safety design of vehicles using stepwise regression model. Struct Multidiscip Optim 35(6):561–569. https://doi.org/10.1007/s00158-007-0163-x
Lobo F, Lima C, Michalewicz Z (eds) (2007) Parameter setting in evolutionary algorithms. Studies in computational intelligence, vol 54. Springer, Berlin/Heidelberg
López-Camacho E, Terashima-Marin H, Ross P, Ochoa G (2014) A unified hyper-heuristic framework for solving bin packing problems. Expert Syst Appl 41(15):6876–6889. https://doi.org/10.1016/j.eswa.2014.04.043, 00002
López-Ibáñez M, Dubois-Lacoste J, Stützle T, Birattari M (2011) The irace package, iterated race for automatic algorithm configuration. Technical report. TR/IRIDIA/2011-004, IRIDIA, Université Libre de Bruxelles
Lourenço HR, Martin O, Stützle T (2003) Iterated local search, handbook of meta-heuristics. Springer, Berlin/Heidelberg
Maashi M, Özcan E, Kendall G (2014) A multi-objective hyper-heuristic based on choice function. Expert Syst Appl 41(9):4475–4493. https://doi.org/10.1016/j.eswa.2013.12.050, 00008
Maashi M, Kendall G, Özcan E (2015) Choice function based hyper-heuristics for multi-objective optimization. Appl Soft Comput 28:312–326. https://doi.org/10.1016/j.asoc.2014.12.012
Marmion ME, Mascia F, López-Ibáñez M, Stützle T (2013) Automatic design of hybrid stochastic local search algorithms. In: Blesa MJ, Blum C, Festa P, Roli A, Sampels M (eds) Hybrid metaheuristics. Lecture notes in computer science, vol 7919. Springer, Berlin/Heidelberg, pp 144–158
Marshall RJ, Johnston M, Zhang M (2014) A comparison between two evolutionary hyper-heuristics for combinatorial optimisation. In: Dick G, Browne WN, Whigham P, Zhang M, Bui LT, Ishibuchi H, Jin Y, Li X, Shi Y, Singh P, Tan KC, Tang K (eds) Simulated evolution and learning, Lecture notes in computer science, vol 8886. Springer International Publishing, Cham, pp 618–630
Marshall RJ, Johnston M, Zhang M (2014) Developing a hyper-heuristic using grammatical evolution and the capacitated vehicle routing problem. In: Dick G, Browne WN, Whigham P, Zhang M, Bui LT, Ishibuchi H, Jin Y, Li X, Shi Y, Singh P, Tan KC, Tang K (eds) Simulated evolution and learning, Lecture notes in computer science, vol 8886. Springer International Publishing, Cham, pp 668–679
Marshall RJ, Johnston M, Zhang M (2014) Hyper-heuristics, grammatical evolution and the capacitated vehicle routing problem. In: Proceedings of the 2014 conference companion on genetic and evolutionary computation companion (GECCOComp’14). ACM, New York, pp 71–72. https://doi.org/10.1145/2598394.2598407
Martin S, Ouelhadj D, Smet P, Vanden Berghe G, Özcan E (2013) Cooperative search for fair nurse rosters. Expert Syst Appl 40(16):6674–6683. https://doi.org/10.1016/j.eswa.2013.06.019
Mascia F, López-Ibáñez M, Dubois-Lacoste J, Stützle T (2014) Grammar-based generation of stochastic local search heuristics through automatic algorithm configuration tools. Comput Oper Res 51:190–199. https://doi.org/10.1016/j.cor.2014.05.020
McClymont K, Keedwell EC, Savić D, Randall-Smith M (2014) Automated construction of evolutionary algorithm operators for the bi-objective water distribution network design problem using a genetic programming based hyper-heuristic approach. J Hydroinf 16(2):302. https://doi.org/10.2166/hydro.2013.226, 00001
McClymont K, Keedwell E, Savic D (2015) An analysis of the interface between evolutionary algorithm operators and problem features for water resources problems. A case study in water distribution network design. Environ Model Softw. https://doi.org/10.1016/j.envsoft.2014.12.023
Misir M, Lau HC (2014) Diversity-oriented bi-objective hyper-heuristics for patrol scheduling. In: 10th international conference on the practice and theory of automated timetabling (PATAT 2014)
Misir M, Smet P, Vanden Berghe G (2014) An analysis of generalised heuristics for vehicle routing and personnel rostering problems. J Oper Res Soc https://doi.org/10.1057/jors.2014.11
Neamatian Monemi R, Danach K, Khalil W, Gelareh S, Lima Jr FC, Aloise DJ (2015) Solution methods for scheduling of heterogeneous parallel machines applied to the workover rig problem. Expert Syst Appl 42(9):4493–4505. https://doi.org/10.1016/j.eswa.2015.01.046
Nguyen S, Zhang M, Johnston M, Tan KC (2014) Automatic design of scheduling policies for dynamic multi-objective job shop scheduling via cooperative coevolution genetic programming. IEEE Trans Evol Comput 18(2):193–208. https://doi.org/10.1109/TEVC.2013.2248159, 00013
Ochoa G, Burke EK (2014) Hyperils: an effective iterated local search hyper-heuristic for combinatorial optimisation. In: 10th international conference on the practice and theory of automated timetabling (PATAT 2014)
Ochoa G, Hyde M, Curtois T, Vazquez-Rodriguez JA, Walker J, Gendreau M, Kendall G, McCollum B, Parkes AJ, Petrovic S, Burke EK (2012) HyFlex: a benchmark framework for cross-domain heuristic search. In: Hao JK, Middendorf M (eds) Evolutionary computation in combinatorial optimization. Lecture notes in computer science, vol 7245. Springer, Berlin/Heidelberg, pp 136–147
Ong YS, Keane AJ (2004) Meta-Lamarckian learning in memetic algorithms. IEEE Trans Evol Comput 8(2):99–110. https://doi.org/10.1109/TEVC.2003.819944, 00460
Pappa GL, Ochoa G, Hyde MR, Freitas AA, Woodward J, Swan J (2013) Contrasting meta-learning and hyper-heuristic research: the role of evolutionary algorithms. Genet Program Evolvable Mach 15(1):3–35. https://doi.org/10.1007/s10710-013-9186-9, 00000
Park J, Nguyen S, Johnston M, Zhang M (2013) Evolving stochastic dispatching rules for order acceptance and scheduling via genetic programming. In: Cranefield S, Nayak A (eds) AI 2013: advances in artificial intelligence. Lecture notes in computer science, vol 8272. Springer International Publishing, Berlin, pp 478–489, 00001
Pillay N (2014) A review of hyper-heuristics for educational timetabling. Ann Oper Res 1–36. https://doi.org/10.1007/s10479-014-1688-1
Poli R, Graff M (2009) There is a free lunch for hyper-heuristics, genetic programming and computer scientists. Springer, Berlin/Heidelberg, pp 195–207
Qu R, Pham N, Bai R, Kendall G (2014) Hybridising heuristics within an estimation distribution algorithm for examination timetabling. Appl Intell 1–15. https://doi.org/10.1007/s10489-014-0615-0
Ren Z, Jiang H, Xuan J, Hu Y, Luo Z (2014) New insights into diversification of hyper-heuristics. IEEE Trans Cybern 44(10):1747–1761. https://doi.org/10.1109/TCYB.2013.2294185, 00004
Ross P (2005) Hyper-heuristics. In: Burke EK, Kendall G (eds) Search methodologies, 1st edn. Springer, New York, pp 529–556
Ross P (2014) Hyper-heuristics. In: Burke EK, Kendall G (eds) Search methodologies, 2nd edn. Springer, New York, pp 611–638
Ryser-Welch P, Miller JF (2014) Plug-and-play hyper-heuristics: an extended formulation. In: 2014 IEEE eighth international conference on self-adaptive and self-organizing systems (SASO), pp 179–180. https://doi.org/10.1109/SASO.2014.33, 00000
Sá AGCd, Pappa GL (2014) A hyper-heuristic evolutionary algorithm for learning Bayesian network classifiers. In: Bazzan ALC, Pichara K (eds) Advances in artificial intelligence – IBERAMIA 2014. Lecture notes in computer science. Springer International Publishing, Cham, pp 430–442
Sabar N, Ayob M, Kendall G, Qu R (2014) The automatic design of hyper-heuristic framework with gene expression programming for combinatorial optimization problems. IEEE Trans Evol Comput PP(99):1–1. https://doi.org/10.1109/TEVC.2014.2319051
Sabar NR, Kendall G (2015) Population based Monte Carlo tree search hyper-heuristic for combinatorial optimization problems. Inf Sci https://doi.org/10.1016/j.ins.2014.10.045
Sabar NR, Ayob M, Kendall G, Qu R (2015) A dynamic multiarmed bandit-gene expression programming hyper-heuristic for combinatorial optimization problems. IEEE Trans Cybern 45(2):217–228. https://doi.org/10.1109/TCYB.2014.2323936
Salcedo-Sanz S, Matías-Román JM, Jiménez-Fernández S, Portilla-Figueras A, Cuadra L (2013) An evolutionary-based hyper-heuristic approach for the Jawbreaker puzzle. Appl Intell 40(3):404–414. https://doi.org/10.1007/s10489-013-0470-4, 00000
Salcedo-Sanz S, Jiménez-Fernández S, Matías-Román JM, Portilla-Figueras JA (2014) An educational software tool to teach hyper-heuristics to engineering students based on the Bubble breaker puzzle. Comput Appl Eng Educ n/a–n/a. https://doi.org/10.1002/cae.21597, 00000
Salhi A, Rodríguez JAV (2013) Tailoring hyper-heuristics to specific instances of a scheduling problem using affinity and competence functions. Memetic Comput 6(2):77–84. https://doi.org/10.1007/s12293-013-0121-7, 00000
Segredo E, Segura C, León C (2013) Memetic algorithms and hyperheuristics applied to a multiobjectivised two-dimensional packing problem. J Glob Optim 58(4):769–794. https://doi.org/10.1007/s10898-013-0088-4, 00000
Segredo E, Segura C, Leon C (2014) Fuzzy logic-controlled diversity-based multi-objective memetic algorithm applied to a frequency assignment problem. Eng Appl Artif Intell 30:199–212. https://doi.org/10.1016/j.engappai.2014.01.005
Segredo E, Segura C, Leon C, Hart E (2014) A fuzzy logic controller applied to a diversity-based multi-objective evolutionary algorithm for single-objective optimisation. Soft Comput 1–19. https://doi.org/10.1007/s00500-014-1454-y
Segredo E, Segura C, Leon C (2014) Control of numeric and symbolic parameters with a hybrid scheme based on fuzzy logic and hyper-heuristics. In: 2014 IEEE congress on evolutionary computation (CEC), pp 1890–1897. https://doi.org/10.1109/CEC.2014.6900538, 00000
Sim K, Hart E (2014) An improved immune inspired hyper-heuristic for combinatorial optimisation problems. In: Proceedings of the 2014 conference on genetic and evolutionary computation (GECCO’14). ACM, New York, pp 121–128. https://doi.org/10.1145/2576768.2598241
Sim K, Hart E, Paechter B (2013) Learning to solve bin packing problems with an immune inspired hyper-heuristic. MIT Press, pp 856–863. https://doi.org/10.7551/978-0-262-31709-2-ch126
Sim K, Hart E, Paechter B (2014) A lifelong learning hyper-heuristic method for bin packing. Evol Comput 1–31. https://doi.org/10.1162/EVCO_a_00121
Smit SK, Eiben AE (2009) Comparing parameter tuning methods for evolutionary algorithms. In: IEEE congress on evolutionary computation (CEC’09), pp 399–406
Soria Alcaraz JA, Ochoa G, Carpio M, Puga H (2014) Evolvability metrics in adaptive operator selection. In: Proceedings of the 2014 conference on genetic and evolutionary computation (GECCO’14). ACM, New York, pp 1327–1334. https://doi.org/10.1145/2576768.2598220, 00001
Soria-Alcaraz JA, Ochoa G, Swan J, Carpio M, Puga H, Burke EK (2014) Effective learning hyper-heuristics for the course timetabling problem. Eur J Oper Res 238(1):77–86. https://doi.org/10.1016/j.ejor.2014.03.046, 00006
van der Stockt S, Engelbrecht AP (2014) Analysis of hyper-heuristic performance in different dynamic environments. In: 2014 IEEE symposium on computational intelligence in dynamic and uncertain environments (CIDUE), pp 1–8. https://doi.org/10.1109/CIDUE.2014.7007860
Sutton RS, Barto AG (1998) Introduction to reinforcement learning, 1st edn. MIT Press, Cambridge, 02767
Swan J, Woodward J, Özcan E, Kendall G, Burke EK (2013) Searching the hyper-heuristic design space. Cogn Comput 6(1):66–73. https://doi.org/10.1007/s12559-013-9201-8, 00000
Swiercz A, Burke EK, Cichenski M, Pawlak G, Petrovic S, Zurkowski T, Blazewicz J (2013) Unified encoding for hyper-heuristics with application to bioinformatics. CEJOR 22(3):567–589. https://doi.org/10.1007/s10100-013-0321-8, 00000
Thierens D (2005) An adaptive pursuit strategy for allocating operator probabilities. In: Proceedings of the 7th annual conference on genetic and evolutionary computation (GECCO’05). ACM, New York, pp 1539–1546
Thierens D (2007) Adaptive strategies for operator allocation. In: Lobo F, Lima C, Michalewicz Z (eds) Parameter setting in evolutionary algorithms. Studies in computational intelligence, vol 54. Springer, Berlin/Heidelberg, pp 77–90, 00042
Thomas J, Chaudhari NS (2014) Design of efficient packing system using genetic algorithm based on hyper heuristic approach. Adv Eng Softw 73:45–52. https://doi.org/10.1016/j.advengsoft.2014.03.003, 00000
Topcuoglu HR, Ucar A, Altin L (2014) A hyper-heuristic based framework for dynamic optimization problems. Appl Soft Comput 19:236–251. https://doi.org/10.1016/j.asoc.2014.01.037, 00003
Tsai CW, Huang WC, Chiang MH, Chiang MC, Yang CS (2014) A hyper-heuristic scheduling algorithm for cloud. IEEE Trans Cloud Comput 2(2):236–250. https://doi.org/10.1109/TCC.2014.2315797, 00003
Urra E, Cubillos C, Cabrera-Paniagua D (2015) A hyperheuristic for the dial-a-ride problem with time windows. Math Probl Eng 2015:e707056. https://doi.org/10.1155/2015/707056, 00000
Xie J, Mei Y, Ernst AT, Li X, Song A (2014) A genetic programming-based hyper-heuristic approach for storage location assignment problem. In: 2014 IEEE congress on evolutionary computation (CEC), pp 3000–3007. https://doi.org/10.1109/CEC.2014.6900604
Yarimcam A, Asta S, Özcan E, Parkes AJ (2014) Heuristic generation via parameter tuning for online bin packing. In: 2014 IEEE symposium on evolving and autonomous learning systems (EALS), pp 102–108. https://doi.org/10.1109/EALS.2014.7009510
Yin PY, Chuang KH, Hwang GJ (2014) Developing a context-aware ubiquitous learning system based on a hyper-heuristic approach by taking real-world constraints into account. Univ Access Inf Soc 1–14. https://doi.org/10.1007/s10209-014-0390-z
Yuen SY, Zhang X (2014) Multiobjective evolutionary algorithm portfolio: choosing suitable algorithm for multiobjective optimization problem. In: 2014 IEEE congress on evolutionary computation (CEC), pp 1967–1973. https://doi.org/10.1109/CEC.2014.6900470, 00000
Zheng YJ, Zhang MX, Ling HF, Chen SY (2015) Emergency railway transportation planning using a hyper-heuristic approach. IEEE Trans Intell Transp Syst 16(1):321–329. https://doi.org/10.1109/TITS.2014.2331239
Acknowledgements
Michael G. Epitropakis is supported by a grant from the Engineering and Physical Sciences Research Council (EPSRC Grant No. EP/J017515/1), by a Microsoft Azure Grant 2014, and by a Lancaster University Early Career Internal Grant (A100699). This support is gratefully acknowledged.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this entry
Cite this entry
Epitropakis, M.G., Burke, E.K. (2018). Hyper-heuristics. In: Martí, R., Pardalos, P., Resende, M. (eds) Handbook of Heuristics. Springer, Cham. https://doi.org/10.1007/978-3-319-07124-4_32
Download citation
DOI: https://doi.org/10.1007/978-3-319-07124-4_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07123-7
Online ISBN: 978-3-319-07124-4
eBook Packages: Mathematics and StatisticsReference Module Computer Science and Engineering