Skip to main content

Carrier Scattering at Low Electric Fields

Book cover Semiconductor Physics
  • 227 Accesses

Abstract

Carrier scattering, originating from deviations from ideal lattice periodicity, acts as a damping process for carrier motion. Both elastic and inelastic scattering involve a large variety of scattering centers. Carriers are scattered by acoustic and optical phonons, at neutral or charged impurities, at interfaces, and at other scattering centers. Most scattering events are elastic, changing only the momentum of a carrier but not its energy. Inelastic scattering involves optical phonons and intervalley scattering; in these processes carriers lose much of their energy to the lattice.

At low electric fields, many elastic scattering events precede an inelastic event. The dominating type of scattering changes with lattice temperature. Usually, ionized-impurity scattering prevails at low temperatures and scattering at phonons at high temperatures. The type of carrier scattering determines the relaxation time and with it the carrier mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    These are electric fields Fv rms/μ, where carriers gain only a small fraction of k T between scattering events; this means F ≪ 5×104 V/cm for a typical semiconductor with m n = 0.05 m 0 and μ = 1000 cm2/(Vs).

  2. 2.

    An error up to 20% can occur when applying Eq. 3 because of nonlinearities and interaction of different scattering events as shown by Rode and Knight (1971).

  3. 3.

    The deformation potential is defined as the change in bandgap energy per unit strain and is typically on the order of 10 eV. For a listing, see Table 1. It should be noted that deformation potentials are generally tensors with components Ξ ij , relating the shift of the band edge δE c to the components of the strain tensor e ij (see chapter “Elasticity and Phonons): \( \delta E=\sum_{ij}{\varXi}_{ij}\;{e}_{ij} \); Eq. (9) hence provides only an average in anisotropic media.

  4. 4.

    The experimentally observed exponent of T is −1.67 for Ge (Conwell 1952) and not −1.5. The exponent of T for Si is still larger (≅ 2.4). Inserting actual values for Si (c l = 15.6·1010 N/m2, m n = 0.2 m 0, and Ξ = 9.5 eV), one obtains μ n = 5900 cm2/Vs, a value that is larger by a factor of ~4 than the measured μ n = 1500 cm2/Vs at 300 K.

  5. 5.

    K 2 can be expressed as the ratio of the mechanical to the total work in a piezoelectrical material: \( {K}^2=\left({e}_{\mathrm{pz}}^2/{c}_l\right)/\left(\varepsilon\;{\varepsilon}_0+{e}_{\mathrm{pz}}^2/{c}_l\right) \), with e pz the piezoelectric constant (which is on the order of 10−5 As/cm2), and c l the longitudinal elastic constant (relating the tension T to the stress S and the electric field F as T = c l S − e pzF).

  6. 6.

    Here, \( {F}_{\mathrm{opt}}=1+\frac{2}{\beta} \ln \left(\beta +1\right)+1/\left(\beta +1\right) \), with β = (2|k|L D)2; L D is the Debye length given in Eqs. 94 of chapter “Interaction of Light With Solids” and 49 of chapter “Crystal Interfaces.”

  7. 7.

    More sophisticated estimates are given for thin metal layers (e.g., Fuchs 1938, Sondheimer 1952), where surface effects are less complex. These yield results on the same order of magnitude as those given here.

  8. 8.

    See Fig. 8b, which shows two equivalent transitions: one requires 2·0.8 π/a = 1.6 π/a in the extended E(k) diagram, but actually one needs only a momentum transfer of 2·0.2 π/a = 0.4 π/a.

  9. 9.

    Umklapp processes were introduced for scattering in metals, in which changes in the magnitude of the momentum after scattering from one to another side of the near-spherical Fermi surface are even smaller.

References

  • Anderson JC (1970) Conduction in thin semiconductor films. Adv Phys 19:311

    Article  ADS  Google Scholar 

  • Appel J (1961) Electron-electron scattering and transport phenomena in nonpolar semiconductors. Phys Rev 122:1760

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Auslender M, Hava S (1993) On the calculation of alloy scattering relaxation time for ternary III–V and II–VI semiconductors. Solid State Commun 87:335

    Article  ADS  Google Scholar 

  • Baranskii PI, Klochov WP, Potykievich IV (1975) Semiconductor Electronics. Naukova Dumka, Kiev

    Google Scholar 

  • Bardeen J, Shockley W (1950) Deformation potentials and mobilities in non-polar crystals. Phys Rev 80:72

    Article  ADS  MATH  Google Scholar 

  • Bate RT, Baxter RD, Reid FJ, Beer AC (1965) Conduction electron scattering by ionized donors in InSb at 80°K. J Phys Chem Sol 26:1205

    Article  ADS  Google Scholar 

  • Bir GL, Pikus GE (1974) Symmetry and strain induced effects in semiconductors. Wiley, New York

    Google Scholar 

  • Blacha A, Presting H, Cardona M (1984) Deformation potentials of k = 0 states of tetrahedral semiconductors. Phys Stat Sol B 126:11

    Article  ADS  Google Scholar 

  • Blagosklonskaya LE, Gershenzon EI, Ladyshinskii YP, Popova AP (1970) Scattering of electrons by neutral donors in semiconductors. Sov Phys Sol State 11:2402

    Google Scholar 

  • Boguslawski P (1975) Nonpolar scattering of electrons by optical phonons in small-gap semiconductors. Phys Stat Sol B 70:53

    Article  ADS  Google Scholar 

  • Boiko II (1959) The theory of the mobility of electrons. Sov Phys Sol State 1:518

    Google Scholar 

  • Bonch-Bruevich VL, Kogan SM (1959) The theory of electron plasma in semiconductors. Sov Phys Sol State 1:1118

    Google Scholar 

  • Brooks H (1955) Theory of the electrical properties of germanium and silicon. Adv Electronics Electron Phys vol 7, pp 85–182. Academic Press, New York

    Google Scholar 

  • Chattopadhyay D, Queisser HJ (1981) Electron scattering by ionized impurities in semiconductors. Rev Mod Phys 53:745

    Article  ADS  Google Scholar 

  • Conwell EM (1952) Properties of silicon and germanium. Proc Inst Radio Engrs 40:1327

    Google Scholar 

  • Conwell EM (1967) High-field transport in semiconductors. Academic Press, New York

    Google Scholar 

  • Conwell EM, Weisskopf VF (1950) Theory of impurity scattering in semiconductors. Phys Rev 77:388

    Article  ADS  MATH  Google Scholar 

  • Costato M, Mancinelli F, Reggiani L (1972) Anomalous behavior of shallow donor ground state levels in Ge under pressure. Sol State Commun 9:1335

    Article  ADS  Google Scholar 

  • Dakhovskii IV, Mikhai EF (1965) Calculation of the anisotropy parameter for n-type Si. Sov Phys Sol State 6:2785

    Google Scholar 

  • Debye PP, Conwell EM (1954) Electrical properties of n-type germanium. Phys Rev 93:693

    Article  ADS  Google Scholar 

  • Demchuk KM, Tsidilkovskii IM (1977) Scattering of electrons by the deformation potential in doped InSb. Phys Stat Sol B 82:59

    Article  ADS  Google Scholar 

  • Dienys V, Kancleris Z (1975) Influence of E–E scattering on the phenomenological energy relaxation time in nonpolar semiconductors. Phys Stat Sol B 67:317

    Article  ADS  Google Scholar 

  • Düster F, Labusch R (1973) On the mobility of holes in deformed semiconductors. Phys Stat Sol B 60:161

    Article  ADS  Google Scholar 

  • Eaves L, Hoult RA, Stradling RA, Tidey RJ, Portal JC, Askenazy S (1975) Fourier analysis of magnetophonon and two-dimensional Shubnikov-de Haas magnetoresistance structure. J Phys C 8:1034

    Article  ADS  Google Scholar 

  • Ehrenreich H (1957) Electron scattering in InSb. J Phys Chem Sol 2:131

    Article  ADS  Google Scholar 

  • Ehrenreich H (1961) Band structure and transport properties of some 3-5 compounds. J Appl Phys Suppl 32:2155

    Article  ADS  Google Scholar 

  • Erginsoy C (1950) Neutral impurity scattering in semiconductors. Phys Rev 79:1013

    Article  ADS  Google Scholar 

  • Fletcher K, Butcher PN (1972) An exact solution of the linearized Boltzmann equation with applications to the Hall mobility and Hall factor of n-GaAs. J Phys C 5:212

    Article  ADS  Google Scholar 

  • Fuchs K (1938) The conductivity of thin metallic films according to the electron theory of metals. Proc Cambridge Philos Soc 34:100

    Article  ADS  Google Scholar 

  • Ginter J, Mycielski J (1970) Localized potential method in the theory of electron-phonon interaction. J Phys C 3:L1

    Article  ADS  Google Scholar 

  • Harrison WA (1956) Scattering of electrons by lattice vibrations in nonpolar crystals. Phys Rev 104:1281

    Article  ADS  MathSciNet  Google Scholar 

  • Herring C (1955) Transport properties of a many-valley semiconductor. Bell Sys Tech J 34:237

    Article  Google Scholar 

  • Herring C, Vogt E (1956) Transport and deformation-potential theory for many-valley semiconductors with anisotropic scattering. Phys Rev 101:944

    Article  ADS  MATH  Google Scholar 

  • Höpfel RA, Shah J, Gossard AC (1986) Nonequilibrium electron-hole plasma in GaAs quantum wells. Phys Rev Lett 56:765

    Article  ADS  Google Scholar 

  • Howarth DJ, Sondheimer EH (1953) The theory of electronic conduction in polar semi-conductors. Proc Roy Soc (London) A 219:53

    Article  ADS  MATH  Google Scholar 

  • Kosicki BB, Paul W (1966) Evidence for quasilocalized states associated with high-energy conduction-band minima in semiconductors, particularly Se-doped GaSb. Phys Rev Lett 17:246

    Article  ADS  Google Scholar 

  • Krost A, Richter W, Zahn DRT (1992) Photoexcited plasmon-LO-phonon modes at the ZnSe/GaAs interface. Appl Surf Sci 56:691

    Article  ADS  Google Scholar 

  • Leighton RB (1959) Principles of modern physics. McGraw-Hill, New York

    Google Scholar 

  • León-Monzón K, Rodríguez-Coppola H, Velasco VR, García-Moliner F (1996) The inverse dielectric function of a quasi-two-dimensional electron gas in a quantum well: plasmons in a thin metal layer. J Phys Condensed Matter 8:665

    Article  ADS  Google Scholar 

  • Levinson IB (1966) Piezoelectric scattering by uncharged dislocations. Sov Phys Sol State 7:2336

    Google Scholar 

  • Li YB, Ferguson IT, Stradling RA, Zallen R (1992) Raman scattering by plasmon-phonon modes in highly doped n-InAs grown by molecular beam epitaxy. Semicond Sci Technol 7:1149

    Article  ADS  Google Scholar 

  • Madelung O (1981) Introduction to solid state theory. Springer, Berlin/New York

    Google Scholar 

  • Makowski L, Glicksman M (1973) Disorder scattering in solid solutions of III–V semiconducting compounds. J Phys Chem Sol 34:487

    Article  ADS  Google Scholar 

  • Many A, Goldstein Y, Grover NB (1965) Semiconductor surfaces. North Holland, Amsterdam

    Google Scholar 

  • Mattis D, Sinha O (1970) Impurity scattering in semiconductors. Ann Phys 61:214

    Article  ADS  Google Scholar 

  • McKelvey JP (1966) Solid state and semiconductor physics. Harper & Row, New York

    Google Scholar 

  • McLean TP, Paige EGS (1960) A theory of the effects of carrier-carrier scattering on mobility in semiconductors. J Phys Chem Sol 16:220

    Article  ADS  Google Scholar 

  • Meyer HJG (1958) Infrared absorption by conduction electrons in germanium. Phys Rev 112:298

    Article  ADS  Google Scholar 

  • Meyer HJG, Polder D (1953) Note on polar scattering of conduction electrons in regular crystals. Physica 19:255

    Article  ADS  MATH  Google Scholar 

  • Mitra TK (1969) Electron-phonon interaction in the modified tight-binding approximation. J Phys C 2:52

    Article  ADS  Google Scholar 

  • Moore EJ (1967) Quantum-transport theories and multiple scattering in doped semiconductors. I. Formal theory. Phys Rev 160:607. And: Quantum-transport theories and multiple scattering in doped semiconductors. II. Mobility of n-type gallium arsenide Phys Rev 160:618

    Google Scholar 

  • Morgan TN (1972) How big is an impurity? – Studies of local strain fields in GaP. In: Proceedings of the international conference on physics of semiconductors, PWN Polish Scietific Publishers, Warsaw, pp 989–1000

    Google Scholar 

  • Morimoto T, Tani K (1962) Scattering of charge carriers from point imperfections in semiconductors. J Phys Soc Jpn 17:1121

    Article  ADS  Google Scholar 

  • Morin FJ (1954) Lattice-scattering mobility in germanium. Phys Rev 93:62

    Article  ADS  MATH  Google Scholar 

  • Nag BR (1980) Electron transport in compound semiconductors. Springer, Berlin

    Google Scholar 

  • Nag BR (1984) Relaxation of carriers. In: Alfano RR (ed) Semiconductors probed by ultrafast laser spectroscopy vol I. Academic Press, Orlando, pp 3–44

    Chapter  Google Scholar 

  • Nag BR, Gangopadhyay S (1998) Alloy scattering in quantum wires. Semicond Sci Technol 13:417

    Article  ADS  Google Scholar 

  • Nash JG, Holm-Kennedy JW (1974) Experimental determination of highly concentration-sensitive effects of intervalley electron-electron scattering on electric-field-dependent repopulation in n-Si at 77 K. Appl Phys Lett 24:139

    Article  ADS  Google Scholar 

  • Norton P, Levinstein H (1972) Determination of compensation density by Hall and mobility analysis in copper-doped germanium. Phys Rev B 6:470

    Article  ADS  Google Scholar 

  • Paparazzo E, Zema M (1997) Reflected electron energy loss microscopy and scanning Auger microscopy studies of electron irradiated alkali halide surfaces. Surf Sci 372:L301

    Article  ADS  Google Scholar 

  • Pödör BP (1966) Electron mobility in plastically deformed germanium. Phys Stat Sol B 16:K167

    Article  ADS  Google Scholar 

  • Pödör BP (1970) On the dislocation scattering in silicon-on-insulator films. Phys Stat Sol A 2:K197

    Article  ADS  Google Scholar 

  • Polyakov VM, Tautz FS, Sloboshanin S, Schaefer JA, Usikov AS, Ja Ber B (1998) Surface plasmons at MOCVD-grown GaN(000-1). Semicond Sci Technol 13:1396

    Article  ADS  Google Scholar 

  • Prince MB (1953) Experimental confirmation of relation between pulse drift mobility and charge carrier drift mobility in germanium. Phys Rev 91:271

    Article  ADS  Google Scholar 

  • Putley EH, Mitchell WH (1958) The electrical conductivity and Hall effect of silicon. Proc Phys Soc (London) A 72:193

    Article  ADS  Google Scholar 

  • Raymond A, Robert JL, Pistoulet B (1977) New method for measuring the compensation and the spatial fluctuations of impurities in n-type III-V compounds - application to bulk and epitaxial layers. In: Hilsum C (ed) Proceeding of the 4th international conference on GaAs and related compounds. Institute of Physics, London

    Google Scholar 

  • Rode DL (1972) Electron mobility in Ge, Si, and GaP. Phys Stat Sol B 53:245

    Article  ADS  Google Scholar 

  • Rode DL, Knight S (1971) Electron transport in GaAs. Phys Rev B 3:2534

    Article  ADS  Google Scholar 

  • Rutherford E (1911) The scattering of alpha and beta particles by matter and the structure of the atom. Philos Mag 21:669

    Article  MATH  Google Scholar 

  • Samoilovich AG, Korenblit IYa, Dakhovskii IV, Iskra VD (1961) Solution of the kinetic equation for anisotropic electron scattering. Sov Phys Sol State 3:2148. And: The anisotropy of electron scattering by ionized impurities and acoustic phonons. Sov Phys Sol State 3:2385

    Google Scholar 

  • Schröter W (1969) Trägerbeweglichkeit in verformtem Germanium. Phys Stat Sol B 31:177. (Carrier mobility in deformed germanium, in German)

    Article  ADS  Google Scholar 

  • Seager CH (1985) Grain boundaries in polycrystalline silicon. Ann Rev Mater Sci 15:271

    Article  ADS  Google Scholar 

  • Seeger K (2004) Semiconductor Physics, 9th edn. Springer, Berlin

    Book  MATH  Google Scholar 

  • Slack GA (1997) New materials and performance limits for thermoelectric cooling. In: Rowe D (ed) CRC Handbook on thermoelectricity. CRC Press, New York, p 407

    Google Scholar 

  • Sondheimer EH (1952) The mean free path of electrons in metals. Adv Phys 1:1

    Article  ADS  MATH  Google Scholar 

  • Stillman GE, Wolfe CM, Dimmock JO (1970) Hall coefficient factor for polar mode scattering in n-type GaAs. J Phys Chem Sol 31:1199

    Article  ADS  Google Scholar 

  • Sze SM (1981) Physics of semiconductor devices. Wiley, New York

    Google Scholar 

  • Tripathi P, Sharma AC (1999) Plasmons and their damping in a doped semiconductor superlattice. Pramana J Phys 52:101

    Article  ADS  Google Scholar 

  • Wilson AH (1965) Theory of metals. Cambridge University Press, London

    Google Scholar 

  • Zawadzki W (1972) Electron scattering and transport phenomena in small-gap semiconductors. In: Proceedings of the 11th international conference on physics of semiconductors. PWN Polish Scientific Publishing, Warsaw, pp 87–108

    Google Scholar 

  • Zawadzki W (1982) Mechanisms of electron scattering in semiconductors. In: Moss TS, Paul W (eds) Handbook on semiconductors, Theory and transport properties, vol 1. North Holland, Amsterdam, pp 713–803

    Google Scholar 

  • Zawadzki W, Szymanska W (1971) Elastic electron scattering in InSb-type semiconductors. Phys Stat Sol B 45:415

    Article  ADS  Google Scholar 

  • Ziman JM (1972) Principles of the theory of solids, Cambridge University Press, Cambridge, UK

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo W. Pohl .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Böer, K.W., Pohl, U.W. (2016). Carrier Scattering at Low Electric Fields. In: Semiconductor Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-06540-3_23-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06540-3_23-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06540-3

  • Online ISBN: 978-3-319-06540-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Carrier Scattering at Low Electric Fields
    Published:
    17 June 2022

    DOI: https://doi.org/10.1007/978-3-319-06540-3_23-4

  2. Carrier Scattering at Low Electric Fields
    Published:
    27 February 2020

    DOI: https://doi.org/10.1007/978-3-319-06540-3_23-3

  3. Carrier Scattering at Low Electric Fields
    Published:
    27 September 2017

    DOI: https://doi.org/10.1007/978-3-319-06540-3_23-2

  4. Original

    Carrier Scattering at Low Electric Fields
    Published:
    11 February 2017

    DOI: https://doi.org/10.1007/978-3-319-06540-3_23-1