Skip to main content

Defects in Amporphous and Organic Semiconductors

Semiconductor Physics
  • 524 Accesses

Abstract

Amorphous and organic semiconductors have strong topological irregularities with respect to specific ideal structures, which depend on the particular class of such semiconductors. Most of these defects are rather gradual displacements from an ideal surrounding. The disorder leads to defects levels with a broad energy distribution which extends as band tails into the bandgap. Instead of a sharp band edge known from crystalline solids a mobility edge exists separating between extended states in the bands and localized states in the band tails.

Amorphous semiconductors, also referred to as semiconducting glasses, comprise the classes of amorphous chalcogenides and tetrahedrally bonded amorphous semiconductors. Amorphous chalcogenides are structurally floppy solids with low average coordination numbers and pronounced pinning of the Fermi level near midgap energy. The more rigid tetrahedrally bonded amorphous semiconductors have larger coordination numbers. They may be well doped p-type and n-type much like crystalline semiconductors.

Organic semiconductors comprise small-molecule crystals and polymers. Both have weak intermolecular bonds favoring deviations from ideal alignment. In small-molecule semiconductors the structure of thin films grown on substrates usually deviates from the structure of bulk crystals, with a substantially different molecule ordering at the interface and a strong dependence on the dielectric properties of the substrate. Polymers consist of long chain-like molecules packed largely uniformly in crystalline domains separated by amorphous regions with tangled polymer chains. Besides chemical structure of the chains crystallinity depends on the molecular length.

Karl W. Böer is retired.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    In amorphous structures the average number of next neighbors may substantially differ from that of the corresponding crystalline counterpart, see Sect. 3.1 of chapter “The Structure of Semiconductors.”

  2. 2.

    It should be noted that the definition of a band state is related to the coherence length of an electron wave, which is essentially the same as the mean free path λ.

  3. 3.

    A third class, somewhat in between these two, contains α-P and α-As.

  4. 4.

    Bipolar devices made from such materials are capable of switching at high speed from a low to a high conducting state at a critical bias (Ovshinsky 1968).

  5. 5.

    Polycyclic aromatic hydrocarbons like pentacene have a positively charged planar backbone of atom cores and negatively charged π electrons in front and at the back of this plane, yielding a permanent quadrupole moment.

  6. 6.

    The repetition unit of fused-ring polythiophene comprises four rings like those shown in Fig. 15a with the inner two rings fused by commonly sharing a two carbon atoms with a C = C double bond (see inset Fig. 16).

References

  • Adler D (1985) Chemistry and physics of covalent amorphous semiconductors. In: Adler D, Schwartz BB, Steele MC (eds) Physical properties of amorphous materials. Plenum Press, New York, pp 1–103

    Chapter  Google Scholar 

  • Adler D, Fritzsche H (eds) (1985) Tetrahedrally bonded amorphous semiconductors. Springer, New York

    Google Scholar 

  • Adler D, Yoffa EJ (1977) Localized electronic states in amorphous semiconductors. Can J Chem 55:1920

    Article  Google Scholar 

  • Al-Mahboob A, Sadowski JT, Fujikawa Y, Nakajima K, Sakurai T (2008) Kinetics-driven anisotropic growth of pentacene thin films. Phys Rev B 77:035426

    Article  ADS  Google Scholar 

  • Anderson PW (1958) Absence of diffusion in certain random lattices. Phys Rev 109:1492

    Article  ADS  Google Scholar 

  • Anderson PW (1975) Model for the electronic structure of amorphous semiconductors. Phys Rev Lett 34:953

    Article  ADS  Google Scholar 

  • Cohen MH, Fritzsche H, Ovshinsky SR (1969) Simple band model for amorphous semiconducting alloys. Phys Rev Lett 22:1065

    Article  ADS  Google Scholar 

  • Dinca LE, De Marchi F, MacLeod JM, Lipton-Duffin J, Gatti R, Ma D, Perepichkab DF, Rosei F (2015) Pentacene on Ni(111): room-temperature molecular packing and temperature-activated conversion to graphene. Nanoscale 7:3263

    Article  ADS  Google Scholar 

  • Djordjevic BR, Thorpe MF, Wooten F (1995) Computer model of tetrahedral amorphous diamond. Phys Rev B 52:5685

    Article  ADS  Google Scholar 

  • Drabold DA, Nakhmanson S, Zhang X (2001) Electronic structure of amorphous insulators and phoro-structural effects in chalcogenide glasses. In: Thorpe MF, Tichý L (eds) Properties and applications of amorphous materials. Kluwer, Dordrecht, pp 221–250

    Chapter  Google Scholar 

  • Evans PG, Spalenka JW (2015) Epitaxy of small organic molecules. In: Kuech TF (ed) Handbook of crystal growth of thin films and epitaxy: basic techniques, vol 3 part A, 2nd edn. Elsevier, Amsterdam, pp 509–554

    Chapter  Google Scholar 

  • Forrest SR (1997) Ultrathin organic films grown by organic molecular beam deposition and related techniques. Chem Rev 97:1793

    Article  Google Scholar 

  • Götze W (1981) The conductor-nonconductor transition in strongly disordered three-dimensional systems. In: Devreese JT (ed) Recent development in condensed matter physics. Plenum Press, New York, pp 133–154

    Google Scholar 

  • Götzen J, Käfer D, Wöll C, Witte G (2010) Growth and structure of pentacene films on graphite: weak adhesion as a key for epitaxial film growth. Phys Rev B 81:085440

    Article  ADS  Google Scholar 

  • Hamers RJ (2008) Formation and characterization of organic monolayers on semiconductor surfaces. Annu Rev Anal Chem 1:707

    Article  Google Scholar 

  • Hillier AC, Ward MD (1996) Epitaxial interactions between molecular overlayers and ordered substrates. Phys Rev B 54:14037

    Article  ADS  Google Scholar 

  • Hindeleh AM, Hosemann R (1991) Microparacrystals: the intermediate stage between crystalline and amorphous. J Mater Sci 26:5127

    Article  ADS  Google Scholar 

  • Hooks DE, Fritz T, Ward MD (2001) Epitaxy and molecular organization on solid substrates. Adv Mater 13:227

    Article  Google Scholar 

  • Hosemann R, Hindeleh AM (1995) Structure of crystalline and paracrystalline condensed matter. J Macromol Sci Phys B 34:327

    Article  Google Scholar 

  • Illekova E, Cunat C (1994) An extended review of structural relaxation models with the mutual correlation of their parameters. J Non Cryst Solids 172:597

    Article  ADS  Google Scholar 

  • Jarolimek K, de Groot RA, de Wijs GA, Zeman M (2009) First-principles study of hydrogenated amorphous silicon. Phys Rev B 79:155206

    Article  ADS  Google Scholar 

  • Käfer D, Ruppel L, Witte G (2007) Growth of pentacene on clean and modified gold surfaces. Phys Rev B 75:085309

    Article  ADS  Google Scholar 

  • Kalb WL, Mattenberger K, Batlogg B (2008) Oxygen-related traps in pentacene thin films: energetic position and implications for transistor performance. Phys Rev B 78:035334

    Article  ADS  Google Scholar 

  • Kalb WL, Haas S, Krellner C, Mathis T, Batlogg B (2010) Trap density of states in small-molecule organic semiconductors: a quantitative comparison of thin-film transistors with single crystals. Phys Rev B 81:155315

    Article  ADS  Google Scholar 

  • Kang JH, da Silva Filho D, Bredas J-L, Zhu X-Y (2005) Shallow trap states in pentacene thin films from molecular sliding. Appl Phys Lett 86:152115

    Article  ADS  Google Scholar 

  • Kastner M, Adler D, Fritzsche H (1976) Valence-alternation model for localized gap states in lone-pair semiconductors. Phys Rev Lett 37:1504

    Article  ADS  Google Scholar 

  • Knights JC, Biegelsen DK, Solomon I (1977) Optically induced electron spin resonance in doped amorphous silicon. Solid State Commun 22:133

    Article  ADS  Google Scholar 

  • Knipp D, Northrup JE (2009) Electric-field-induced gap states in pentacene. Adv Mater 21:2511

    Article  Google Scholar 

  • Koch FPV, Rivnay J, Foster S, Müller C, Downing JM, Buchaca-Domingo E, Westacott P, Yu L, Yuan M, Baklar M, Fei Z, Luscombe C, McLachlan MA, Heeney M, Rumbles G, Silva C, Salleo A, Nelson J, Smith P, Stingelin N (2013) The impact of molecular weight on microstructure and charge transport in semicrystalline polymer semiconductors–poly(3-hexylthiophene), a model study. Prog Polym Sci 38:1978

    Article  Google Scholar 

  • Lang DV, Chi X, Siegrist T, Sergent AM, Ramirez AP (2004) Amorphouslike density of gap states in single-crystal pentacene. Phys Rev Lett 93:086802

    Article  ADS  Google Scholar 

  • LeComber PG, Spear WE (1976) Electronic properties of doped amorphous Si and Ge. Am Inst Phys Conf Proc 31:284

    ADS  Google Scholar 

  • Lee PA, Ramakrishna TV (1985) Disordered electronic systems. Rev Mod Phys 57:287

    Article  ADS  Google Scholar 

  • Lewis LJ, Mousseau N (1998) Tight-binding molecular-dynamics studies of defects and disorder in covalently bonded materials. Comput Mater Sci 12:210

    Article  Google Scholar 

  • Li JM, Pfeiffer G, Paesler MA, Sayers DE, Fontaine A (1989) Photon intensity-dependent darkening kinetics in optical and structural anisotropy in a-As2S3: a study of X-ray absorption spectroscopy. J Non Cryst Solids 114:52

    Article  ADS  Google Scholar 

  • Lietoila A, Wakita A, Sigmon TW, Gibbons JF (1982) Epitaxial regrowth of intrinsic, p-doped and compensated (P + B-doped) amorphous Si. J Appl Phys 53:4399

    Article  ADS  Google Scholar 

  • Lifshitz IM (1964) The energy spectrum of disordered systems. Adv Phys 13:483

    Article  ADS  MATH  Google Scholar 

  • Maeda T, Kobayashi T, Nemoto T, Isoda S (2001) Lattice defects in organic crystals revealed by direct molecular imaging. Philos Mag B 81:1659

    Article  ADS  Google Scholar 

  • Mannsfeld SCB, Virkar A, Reese C, Toney MF, Bao Z (2009) Precise structure of pentacene monolayers on amorphous silicon oxide and relation to charge transport. Adv Mater 21:2294

    Article  Google Scholar 

  • Mattheus CC, Baas J, Meetsma A, de Boer JL, Kloc C, Siegrist T, Palstra TTM (2002) A 2:1 cocrystal of 6,13-dihydropentacene and pentacene. Acta Crystallogr E 58:o1229

    Article  Google Scholar 

  • Meyer zu Heringdorf F-J, Reuter MC, Tromp RM (2001) Growth dynamics of pentacene thin films. Nature 412:517

    Article  ADS  Google Scholar 

  • Mosley LE, Paesler MA (1984) Electronic effect on crystallization growth velocities produced by charged dangling bonds in a-Si. Appl Phys Lett 45:86

    Article  ADS  Google Scholar 

  • Mott NF (1969) Charge transport in non-crystalline semiconductors. In: Madelung O (ed) Festkörperprobleme/Advances in solid state physics, vol 9. Vieweg, Braunschweig, pp 22–45

    Google Scholar 

  • Mott NF, Davis EA (1979) Electronic processes in non-crystalline materials, 2nd edn. Oxford University Press, Oxford, UK

    Google Scholar 

  • Mott NF, Massey HSW (1965) The theory of atomic collisions. Claredon Press, Oxford, UK

    MATH  Google Scholar 

  • Mousseau N, Barkema GT (2000) Activated mechanisms in amorphous silicon: an activation-relaxation-technique study. Phys Rev B 61:1898

    Article  ADS  Google Scholar 

  • Northrup JE (2015) Mobility enhancement in polymer organic semiconductors arising from increased interconnectivity at the level of polymer segments. Appl Phys Lett 106:023303

    Article  ADS  Google Scholar 

  • Northrup JE, Chabinyc ML (2003) Gap states in organic semiconductors: hydrogen- and oxygen-induced states in pentacene. Phys Rev B 68:041202

    Article  ADS  Google Scholar 

  • Ovshinsky SR (1968) Reversible electrical switching phenomena in disordered structures. Phys Rev Lett 21:1450

    Article  ADS  Google Scholar 

  • Ovshinsky SR (1976) Localized states in the gap of amorphous semiconductors. Phys Rev Lett 36:1469

    Article  ADS  Google Scholar 

  • Ovshinsky SR (1977) Chemical modification of amorphous chalcogenides. In: Proceedings of the 7th international conference on amorphous and liquid semiconductors, Edinburgh, pp 519–523

    Google Scholar 

  • Ovshinsky SR (1980) The chemistry of glassy materials and their relevance to energy conversion. J Non Cryst Solids 42:335

    Article  ADS  Google Scholar 

  • Pantelides ST (1986) Defects in amorphous silicon: a new perspective. Phys Rev Lett 57:2979

    Article  ADS  Google Scholar 

  • Pantelides ST (1989) The nature of defects and defect dynamics in amorphous silicon. In: Fritzsche H (ed) Amorphous silicon and related materials. World Scientific Publishing, New York, pp 541–556

    Chapter  Google Scholar 

  • Park B-N, Seo S, Evans P (2007) Channel formation in single-monolayer pentacene thin film transistors. J Phys D 40:3506

    Article  ADS  Google Scholar 

  • Pfanner G, Freysoldt C, Neugebauer J, Inam F, Drabold D, Jarolimek K, Zeman M (2013) Dangling-bond defect in a-Si:H: characterization of network and strain effects by first-principles calculation of the EPR parameters. Phys Rev B 87:125308

    Article  ADS  Google Scholar 

  • Rivnay J, Noriega R, Northrup JE, Kline RJ, Toney MF, Salleo A (2011) Structural origin of gap states in semicrystalline polymers and the implications for charge transport. Phys Rev B 83:121306

    Article  ADS  Google Scholar 

  • Sanchez ML, Aguilar MA, de Valle FJO (1997) Study of solvent effects by means of averaged solvent electrostatic potentials obtained from molecular dynamics data. J Comput Chem 18:313

    Article  Google Scholar 

  • Seo S, Evans PG (2009) Molecular structure of extended defects in monolayer-scale pentacene thin films. J Appl Phys 106:103521

    Article  ADS  Google Scholar 

  • Simbrunner C, Sitter H (2015) Organic van der Waals epitaxy versus templated growth by organic-organic heteroepitaxy. In: Kuech TF (ed) Handbook of crystal growth of thin films and epitaxy: basic techniques, vol 3 part A, 2nd edn. Elsevier, Amsterdam, pp 483–508

    Chapter  Google Scholar 

  • Staebler DL, Wronski CR (1977) Reversible conductivity changes in discharge-produced amorphous Si. Appl Phys Lett 31:292

    Article  ADS  Google Scholar 

  • Street RA (1991) Hydrogenated amorphous silicon. Cambridge University Press, Cambridge, UK

    Book  Google Scholar 

  • Street RA, Mott NF (1975) States in the gap in glassy semiconductors. Phys Rev Lett 35:1293

    Article  ADS  Google Scholar 

  • Street RA, Northrup JE, Salleo A (2005) Transport in polycrystalline polymer thin-film transistors. Phys Rev B 71:165202

    Article  ADS  Google Scholar 

  • Stuke J (1976) In: Kolomiets BT (ed) Electronic phenomena in non-crystalline solids. USSR Academy of Sciences, Leningrad, pp 193–202

    Google Scholar 

  • Tanaka K (1998) Medium-range structure in chalcogenide glasses. Jpn J Appl Phys 37:1747

    Article  ADS  Google Scholar 

  • Tanaka K, Nakayama S-i (1999) Band-tail characteristics in amorphous semiconductors studied by the constant-photocurrent method. Jpn J Appl Phys 38:3986

    Article  ADS  Google Scholar 

  • Thouless DJ (1974) Electrons in disordered systems and the theory of localization. Phys Rep 13:93

    Article  ADS  Google Scholar 

  • Tsetseris L, Pantelides ST (2007) Intercalation of oxygen and water molecules in pentacene crystals: first-principles calculations. Phys Rev B 75:153202

    Article  ADS  Google Scholar 

  • Varshishta P, Kalia RK, Nakano A, Li W, Ebbsjö I (1996) Molecular dynamics methods and large-scale simulations of amorphous materials. In: Thorpe MF, Mitkova MI (eds) Amorphous insulators and semiconductors. NATO ASI ser 3 high technology, vol 23. Kluwer Academic Publishers, Dordrecht, p 151

    Google Scholar 

  • Varshneya AK, Seeram AN, Swiler DR (1993) A review of the average coordination number concept in multicomponent chalcogenide glass systems. Phys Chem Glasses 34:179

    Google Scholar 

  • Verlaak S, Heremans P (2007) Molecular microelectrostatic view on electronic states near pentacene grain boundaries. Phys Rev B 75:115127

    Article  ADS  Google Scholar 

  • Virkar AA, Mannsfeld S, Bao Z, Stingelin N (2010) Organic semiconductor growth and morphology considerations for organic thin-film transistor. Adv Mater 22:3857

    Article  Google Scholar 

  • Wooten F, Weaire D (1989) Modelling tetrahedrally bonded random networks by computer. In: Ehrenreich H, Turnbull D (eds) Solid state physics, vol 40. Academic Press, New York, pp 1–42

    Google Scholar 

  • Yogev S, Matsubara R, Nakamura M, Zschieschang U, Klauk H, Rosenwaks Y (2013) Fermi level pinning by gap states in organic semiconductors. Phys Rev Lett 110:036803

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo W. Pohl .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Böer, K.W., Pohl, U.W. (2016). Defects in Amporphous and Organic Semiconductors. In: Semiconductor Physics. Springer, Cham. https://doi.org/10.1007/978-3-319-06540-3_20-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06540-3_20-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-06540-3

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Defects in Amorphous and Organic Semiconductors
    Published:
    27 May 2022

    DOI: https://doi.org/10.1007/978-3-319-06540-3_20-4

  2. Defects in Amorphous and Organic Semiconductors
    Published:
    26 March 2020

    DOI: https://doi.org/10.1007/978-3-319-06540-3_20-3

  3. Defects in Amorphous and Organic Semiconductors
    Published:
    27 September 2017

    DOI: https://doi.org/10.1007/978-3-319-06540-3_20-2

  4. Original

    Defects in Amporphous and Organic Semiconductors
    Published:
    30 December 2016

    DOI: https://doi.org/10.1007/978-3-319-06540-3_20-1