Skip to main content

OCT in Dermatology

  • Reference work entry
Optical Coherence Tomography

Abstract

OCT is increasingly interesting for non-invasive skin imaging in Dermatology. Due to its resolution and imaging depth, OCT is already routinely established for diagnosis of nonmelanoma skin cancer, whereas for pigmented lesions, the resolution is still not high enough. OCT has also a high value for monitoring of treatment effects, for example to control healing after non-surgical topical treatment of basal cell carcinomas. In summary, there are several indications for applications of OCT to image skin diseases, and its importance will grow in the future due to further technical developments like speckle variance OCT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Welzel, E. Lankenau, R. Birngurber, R. Engelhardt, Optical coherence tomography of the human skin. J. Am. Acad. Dermatol. 37(6), 958–963 (1997)

    Article  Google Scholar 

  2. J. Welzel, E. Lankenau, R. Birngruber, R. Engelhardt, Optical coherence tomography of the human skin. Curr. Probl. Dermatol. 26, 27–37 (1998)

    Article  Google Scholar 

  3. F. Mohs, Chemosurgical treatment of cancer of the ear; a microscopically controlled method of excision. Surgery 21(5), 605–622 (1947)

    Google Scholar 

  4. Michelson Diagnostics Ltd, Press release OCT dermatology training centre to be set up in Bonn, (June 2012), www.michelsondiagnostics.com

  5. L. Carrion, M. Lestrade, Z. Xu, G. Touma, R. Maciedjko, M. Bertrand, Comparative study of optical sources in the near infrared for optical coherence tomography applications. J. Biomed. Opt. 12(1), 014017 (2007)

    Article  ADS  Google Scholar 

  6. A. Knüttel, S. Bonev, W. Knaak, New method for evaluation of in vivo scattering and refractive index properties obtained with optical coherence tomography. J. Biomed. Opt. 9(2), 265–273 (2004)

    Article  ADS  Google Scholar 

  7. Thorlabs GmbH. www.thorlabs.com/navigation.cfm?guide_id=2039. Accessed 16 Nov 2012

  8. Michelson Diagnostics Ltd. www.michelsondignostics.com. Accessed 16 Nov 2012

  9. Agfa Healthcare. www.agfahealthcare.com/global/en/main/products_services/dermatology/oct/skintell.jsp. Accessed 16 Nov 2012

  10. LL Tech SAS. www.lltechimaging.com. Accessed 16 Nov 2012

  11. B. Vakoc et al., Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat. Med. 15, 1219–1223 (2009)

    Article  Google Scholar 

  12. M. A et al., Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt. Lett. 33(13), 1530–1532 (2008)

    Article  ADS  Google Scholar 

  13. C. Blatter et al., In situ structural and microangiographic assessment of human skin lesions with high-speed OCT. Biomed. Opt. Exp 3(10), 2636–2646 (2012)

    Article  Google Scholar 

  14. J. Schmitt, OCT elastography: imaging microscopic deformation and strain of tissue. Opt. Express 3(6), 1990–211 (1998)

    Article  Google Scholar 

  15. A. Grimwood, Elastographic contrast generation in optical coherence tomography from a localized shear stress. Phys. Med. Biol 55(18), 5515 (2010)

    Article  Google Scholar 

  16. G. Vargas, E.K. Chan, J.K. Barton, H.G. Rylander 3rd, A.J. Welch, User of an agent to reduce scattering in skin. Laser Surg. Med. 24(2), 133–141 (1999)

    Article  Google Scholar 

  17. Michelson Diagnostics Ltd. www.michelsondiagnostics.co/octmanualtopmenu.html. Accessed 16 Nov 2012

  18. US National Library of Medicine/National Institutes of Health. www.ncbu.nlm.nih.gov/pubmed. Accessed 16 Nov 2012

  19. A. Knüttel, Spatially confined and temporally resolved refractive index and scattering evaluation in human skin performed with optical coherence tomography. J. Biomed. Opt. 5(1), 83–92 (2000)

    Article  Google Scholar 

  20. J. Welzel, Optical coherence tomography in dermatology: a review. Skin Res. Technol. 7(1), 1–9 (2001)

    Article  Google Scholar 

  21. R. Schmitt, U. Marx, H. Walles, L. Schober, Structural analysis of artificial skin equivalents. Proc. SPIE OSA Biomed. Opt. 8091, 80911Q (2011)

    ADS  Google Scholar 

  22. J.T. LaCroix, J. Xia, M.A. Heidekker, A fully automated approach to quantitatively determine thickness of tissue-engineered cell sheets. Ann. Biomed. Eng. 37(7), 1348–1357 (2009)

    Article  Google Scholar 

  23. L.W. Smith, M. Bonesi, R. Smallwood, S.J. Matcher, S. MacNeil, Using swept source optical coherence tomography to monitor the formation of neo-epidermis in tissue-engineered skin. J. Tissue Eng. Regen. Med. 4(8), 652–685 (2010)

    Article  Google Scholar 

  24. R.F. Donnelly et al., Optical coherence tomography is a valuable tool n the study of the effects of microneedle geometry on skin penetration characteristics and in-skin dissolution. J. Control. Release 147(3), 333–341 (2010)

    Article  MathSciNet  Google Scholar 

  25. M. Garland, E. Caffarel-Salvador, K. Migalski, D. Wooflsomn, R. Donnelly, Dissolving polymeric microneedle arrays for electrically assisted drug delivery. J. Control. Release 159(1), 52–59 (2012)

    Article  Google Scholar 

  26. N.G. Bartels, I. Jahnke, A. Patelzt, H. Richter, J. Lademann, U. Blume-Peytavi, Hair shaft abnormalities in alopecia areata evaluated by optical coherence tomography. Skin Res. Technol. 17(2), 201–205 (2011)

    Article  Google Scholar 

  27. J. Lademann et al., Optical coherent tomography for in vivo determination of changes in hair cross section and diameter during treatment with glucocorticosteroids – a simple method to screen for doping substances? Skin Pharmacol. Physiol. 21, 312–317 (2008)

    Google Scholar 

  28. H. Morsy, M. Mogensen, L. Thrane, G. Jemec, Imaging of intradermal tattoos by optical coherence tomography. Skin Res. Technol. 13(4), 444–448 (2007)

    Article  Google Scholar 

  29. F. Bazant-hegemark, I. Meglinkski, N. Kandamany, B. Monk, N. Stone, Optical coherence tomography: a potential tool for unsupervised prediction of treatment response for port-wine stains. Photodiagn. Photodyn. Ther. 5(3), 191–197 (2008)

    Article  Google Scholar 

  30. S. Zhao et al., Imaging port wine stains by fiber optical coherence tomography. J. Biomed. Opt. 15(3), 036020 (2010)

    Article  ADS  Google Scholar 

  31. T. Maier, M. Braun-Falco, R.P. Laubender, T. Ruzicka, C. Berking, Actinic keratosis in the en-face and slice imaging mode of high definition optical coherence tomography and comparison with histology. Br. J. Dermatol. 168(1), 120–128 (2013)

    Article  Google Scholar 

  32. T. Maier, M. Braun-Falco, T. Hinz, M.H.Schmid-Wendtner, T. Ruzicka, C. Berking, Morphology of basal cell carcinoma in high definition optical coherence tomography: en-face and slice imaging mode, and comparison with histology. J. Eur. Acad. Dermatol. Venereol. 27(1), e97–104 (2013)

    Article  Google Scholar 

  33. M. Mogensen, B.M. Nürnberg, L. Thrane, T.M. Jørgensen, P.E. Andersen, G.B. Jemec, How histological features of basal cell carcinomas influence image quality in optical coherence tomography. J. Biophotonics 4(7–8), 544–551 (2011)

    Article  Google Scholar 

  34. M. Mogensen, T.M. Joergensen, B.M. Nürnberg, H.A. Morsy, J.B. Thomsen, L. Thrane, G.B. Jemec, Assessment of optical coherence tomography imaging in the diagnosis of non-melanoma skin cancer and benign lesions versus normal skin: observer-blinded evaluation by dermatologists and pathologists. Dermatol. Surg. 35(6), 965–972 (2009)

    Article  Google Scholar 

  35. M. Mogensen, B.M. Nürnberg, J.L. Forman, J.B. Thomsen, L. Thrane, G.B. Jemec, In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound. Br. J. Dermatol. 160(5), 1026–1033 (2009)

    Article  Google Scholar 

  36. M. Mogensen, G.B. Jemec, Diagnosis of nonmelanoma skin cancer/keratinocyte carcinoma: a review of diagnostic accuracy of nonmelanoma skin cancer diagnostic tests and technologies. Dermatol. Surg. 33(10), 1158–1174 (2007)

    Google Scholar 

  37. Gambichler et al., Characterization of benign and malignant melanocytic skin lesions using optical coherence tomography in vivo. J. Am. Acad. Dermatol. 57(4), 629–637 (2007)

    Article  Google Scholar 

  38. Todorovic et al., In vivo burn imaging using Mueller optical coherence tomography. Opt. Express 16(14), 10279–10284 (2008)

    Article  ADS  Google Scholar 

  39. Kim et al., In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography. J. Biomed. Opt. 17(6), 066012 (2012)

    Article  ADS  Google Scholar 

  40. M. Kaiser, A. Yafi, M. Cinat, B. Choi, A.J. Durkin, Noninvasive assessment of burn wound severity using optical technology: a review of current and future modalities. Burns 37(3m), 377–386 (2011)

    Article  Google Scholar 

  41. Y. Ferraq, D. Black, J. Theunis, S. Mordon, Superficial wounding model for epidermal barrier repair studies: comparison of erbium:YAG laser and the suction blister method. Lasers Surg. Med. 44(7), 525–532 (2012)

    Article  Google Scholar 

  42. Z. Wang, H. Pan, J. Liu, W. Chen, Y. Pan, Assessment of dermal would repair after collagen implantation with optical coherence tomography. Tissue Eng. C Meth. 14(1), 35–45 (2008)

    Article  Google Scholar 

  43. J. Welzel, M. Bruhns, H.H. Wolff, Optical coherence tomography in contact dermatitis and psoriasis. Arch. Dermatol. Res. 295(2), 50–55 (2003)

    Article  Google Scholar 

  44. Morsy et al., Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity. Arch. Dermatol. Res. 302, 105–111 (2010)

    Article  Google Scholar 

  45. Phillips et al., Dermal reflectivity determined by optical coherence tomography is an indicator of epidermal hyperplasia and dermal edema within inflamed skin. JBO Lett. 16(4), 040503 (2011)

    ADS  Google Scholar 

  46. M.H. Zulfakar et al., In vivo response of GsdmA3Dfl/+mice to topically applied anti-psoriatic agents: effects on epidermal thickness, as determined by optical coherence tomography and H&E staining. Exp. Dermatol. 20(3), 269–272 (2011)

    Article  Google Scholar 

  47. Castillo-Gallego et al., A comparison of optical coherence tomography and clinical assessment of nail disease in psoriasis and Psoriatic Arthritis. Arthritis Rheum. vol 63(Suppl 10), 200 (2011)

    Google Scholar 

  48. F. Abuzahra et al., Pilot study: optical coherence tomography as a non-invasive diagnostic perspective for real time visualization of onychomycosis. Mycoses 53(4), 334–339 (2009)

    Google Scholar 

  49. N. Nandanan, J. Fisher, D. Siegel, O. Markowitz, Optical coherence tomography imaging of onychomycosis, Poster presented at EADV (2012)

    Google Scholar 

  50. G. Rothmund, E.C. Sattler, R. Kaestle, C. Fischer C.J. Haas, H. Starz, J. Welzel, Confocal laser scanning microscopy as a new valuable tool in the diagnosis of onychomycosis – comparison of six diagnostic methods. Mycoses 56(1), 47–55 (2013)

    Article  Google Scholar 

  51. Abignano et al., Optical coherence tomography: a new imaging technique that allows detailed visualization of affected scleroderma skin [abstract]. Arthritis Rheum. 63(Suppl 10), 705 (2011)

    Google Scholar 

  52. K. Larin, M. Motamedi, M.S. Eledrisi, R.O. Esenaliev, Noninvasive blood glucose monitoring with optical coherence tomography. Diabetes Care 25(12), 2263–2267 (2002)

    Article  Google Scholar 

  53. R. Kuranov et al., In vivo study of glucose-induced changes in skin properties assessed with optical coherence tomography. Phys. Med. Biol. 51(16), 3885 (2006)

    Article  Google Scholar 

  54. K. König, M. Speicher, R. Bückle, J. Reckfort, G. McKenzie, J. Welzel, M.J. Koehler, P. Elsner, M. Kaatz, Clinical optical coherence tomography combined with multiphoton tomography of patients with skin diseases. J. Biophotonics 2(6–7), 389–397 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Holmes .

Editor information

Editors and Affiliations

Additional information

Disclosures

The author Jon Holmes is an employee of Michelson Diagnostics Ltd., a commercial manufacturer of dermatological OCT instruments for scientific and clinical applications.

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Holmes, J., Welzel, J. (2015). OCT in Dermatology. In: Drexler, W., Fujimoto, J. (eds) Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-06419-2_75

Download citation

Publish with us

Policies and ethics