Skip to main content

Development of Integrated Multimodality Intravascular Imaging System for Assessing and Characterizing Atherosclerosis

  • Reference work entry
Optical Coherence Tomography

Abstract

Atherosclerosis is one of the major causes of morbidity and mortality in developed countries. Early detection of plaque lesions is the first and most necessary step towards preventing the lethal consequences of atherosclerosis. Currently, many biomedical imaging techniques aimed at imaging and assessing vulnerable plaques have been reported in literature. Unfortunately, atherosclerosis is often asymptomatic, as vulnerable plaques grow without causing any detrimental side effects until rupturing. Due to this complication, the information provided by a single clinical arterial imaging technique is often insufficient to diagnose vulnerable plaque formation at an early stage. Therefore, an optimal imaging modality for diagnosis and characterization of plaques should combine high spatial resolution capable of resolving fibrous cap thickness, deep imaging depth capable of assessing plaque burden and vessel remodeling, and molecular sensitivity capable of determining tissue composition and mechanical properties.

This chapter describes several multimodality intravascular imaging systems that integrate intravascular OCT with ultrasound (US), fluorescence, and elastography. The integrated multimodality intravascular imaging system can measure vascular tissue with high imaging resolution and deep imaging depth, chemical composition, and tissue mechanical properties simultaneously. The system will provide an interventional cardiologist with a critically important tool for detecting and characterizing vulnerable plaques, monitoring the progression of disease, and evaluating the efficacy of intervention. The surveillance and early diagnosis of vulnerable lesions will prove to be of the utmost importance in further efforts to tailor therapeutic interventions towards patients at risk. Several multimodality intravascular imaging systems, including intravascular OCT/US, OCT/fluorescence, and OCT/phase resolved acoustic radiation force optical coherence elastography will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J. Narula, W.H. Strauss, The popcorn plaques. Nat. Med. 13, 532–534 (2007)

    Article  Google Scholar 

  2. C. Weber, H. Noels, Atherosclerosis: current pathogenesis and therapeutic options. Nat. Med. 17(11), 1410–1422 (2011)

    Article  Google Scholar 

  3. R. Virmani, F.D. Kolodgie, A.P. Burke, A.V. Finn, H.K. Gold, T.N. Tulenko, S.P. Wrenn, J. Narula, Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler. Thromb. Vasc. Biol. 25(10), 2054–2061 (2005)

    Article  Google Scholar 

  4. J. Narula, H.W. Strauss, Imaging of unstable atherosclerotic lesions. Eur. J. Nucl. Med. Mol. Imaging 32(1), 1–5 (2005)

    Article  Google Scholar 

  5. R. Virmani, F.F. Kolodgie, A.P. Burke, A.V. Finn, H.K. Gold, T.N. Tulenko, S.P. Wrenn, J. Narula, Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler. Thromb. Vasc. Biol. 25(10), 2054–2061 (2005)

    Article  Google Scholar 

  6. L. Marcu, Q. Fang, J. Jo, T. Papaioannou, A. Dorafshar, T. Reil, J. Qiao, J. Baker, J. Freischlag, M. Fishbein, In vivo detection of macrophages in a rabbit atherosclerotic model by time-resolved laser-induced fluorescence spectroscopy. Atherosclerosis 181(2), 295–303 (2005)

    Article  Google Scholar 

  7. R. Puri, M.I. Worthley, S.J. Nicholls, Intravascular imaging of vulnerable coronary plaque: current and future concepts. Nat. Rev. Cardiol. 8(3), 131–139 (2011)

    Article  Google Scholar 

  8. P.J. Campagnola, A.C. Millard, M. Terasaki, P.E. Hoppe, C.J. Malone, W.A. Mohler, Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys. J. 82(1), 493–508 (2002)

    Article  Google Scholar 

  9. M.B. Lilledahl, O.A. Haugen, C.D. Lange-Davies, L.O. Svaasand, Characterization of vulnerable plaques by multiphoton microscopy. J. Biomed. Opt. 12(4), 044005 (2007)

    Article  ADS  Google Scholar 

  10. H.W. Wang, I.M. Langohr, M. Sturek, J.X. Cheng, Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimoddal nonlinear optical microscopy. Arterioscler. Thromb. Vasc. Biol. 29, 1342 (2009)

    Article  Google Scholar 

  11. H.W. Wang, T.T. Le, J.X. Cheng, Label-free imaging of arterial cells and extracellular matrix using a multimodal CARS microscope. Opt. Commun. 281, 1813–1822 (2008)

    Article  ADS  Google Scholar 

  12. A. Zoumi, X. Lu, S. Ghassan, B.J. Tromberg, Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy. Biophys. J. 87, 2778–2786 (2004)

    Article  ADS  Google Scholar 

  13. W. Wei, X. Li, Q. Zhou, K.K. Shung, Z. Chen, Integrated ultrasound and photoacoustic probe for co-registered intravascular imaging. J. Biomed. Opt. 16(10), 106001 (2011)

    Article  ADS  Google Scholar 

  14. P. Wang, H.W. Wang, M. Sturek, J.X. Cheng, Bond-selective imaging of deep tissue through the optical window between 1600 and 1850 nm. J. Biophotonics 5(1), 25–32 (2012)

    Article  Google Scholar 

  15. K. Jansen, A.F. van der Steen, H.M. van Beusekom, J.W. Oosterhuis, G. van Soest, Intravascular photoacoustic imaging of human coronary atherosclerosis. Opt. Lett. 36(5), 597–599 (2011)

    Article  ADS  Google Scholar 

  16. B. Wang, J.L. Su, J. Amirian, S.H. Litovsky, R. Smalling, S. Emelianov, Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging. Opt. Express 18(5), 4889–4897 (2010)

    Article  ADS  Google Scholar 

  17. P.R. Moreno, R.A. Lodder, K.R. Purushothaman, W.E. Charash, W.N. O’Connor, J.E. Muller, Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation 105(8), 923–927 (2002)

    Article  Google Scholar 

  18. F.D. Kolodgie, A.P. Burke, A. Farb, H.K. Gold, J. Yuan, J. Narula, A.V. Finn, R. Virmani, The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr. Opin. Cardiol. 16(5), 285–292 (2001)

    Article  Google Scholar 

  19. T. Sawada, J. Shite, H.M. Garcia-Garcia, T. Shinke, S. Watanabe, H. Otake, D. Matsumoto, Y.D. Tanino, H. Ogasawara, H. Kawamori, N. Kato, M. Miyoshi, P.W. Yokoyama, P.W. Serruys, K.I. Hirata, Feasibility of combined use of intravascular ultrasound radiofrequency data analysis and optical coherence tomography for detecting thin-cap fibroatheroma. Eur. Heart J. 29, 1136–1146 (2008)

    Article  Google Scholar 

  20. S. Waxman, F. Ishibashi, J.E. Muller, Detection and treatment of vulnerable plaques and vulnerable patients: novel approaches to prevention of coronary events. Circulation 114(22), 2390–2411 (2006)

    Article  Google Scholar 

  21. H. Yoo, J.W. Kim, M. Shishkov, E. Namati, T. Morse, R. Shubochkin, J.R. McCarthy, V. Ntziachristos, B.E. Bouma, F.A. Jaffer, G.J. Tearney, Intra-arterial catheter for simultaneous microstructural and molecular imaging in vivo. Nat. Med. 17(12), 1680–1684 (2011)

    Article  Google Scholar 

  22. B.N. Potkin, A.L. Bartorelli, J.M. Gessert, R.F. Neville, Y. Almagor, W.C. Roberts, M.B. Leon, Coronary artery imaging with intravascular high-frequency ultrasound. Circulation 81(5), 1575–1585 (1990)

    Article  Google Scholar 

  23. L. Landini, L. Verrazzani, Spectral characterization of tissues microstructure by ultrasounds: a stochastic approach. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37(5), 448–456 (1990)

    Article  Google Scholar 

  24. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito et al., Optical coherence tomography. Science 254(5035), 1178–1181 (1991)

    Article  ADS  Google Scholar 

  25. G.J. Tearney, I.K. Jang, B.E. Bouma, Optical coherence tomography for imaging the vulnerable plaque. J. Biomed. Opt. 11(2), 021002 (2006)

    Article  ADS  Google Scholar 

  26. M.U. Farooq, A. Khasnis, A. Majid, M.Y. Kassab, The role of optical coherence tomography in vascular medicine. Vasc. Med. 14(1), 63–71 (2009)

    Article  Google Scholar 

  27. G. Pasterkamp, E. Falk, H. Woutman, C. Borst, Techniques characterizing the coronary atherosclerotic plaque: influence on clinical decision making. J. Am. Coll. Cardiol. 36(1), 13–21 (2000)

    Article  Google Scholar 

  28. M.E. Brezinski, G.J. Tearney, B.E. Bouma, J.A. Izatt, M.R. Hee, E.A. Swanson, J.F. Southern, J.G. Fujimoto, Optical coherence tomography for optical biopsy – properties and demonstration of vascular pathology. Circulation 93(6), 1206–1213 (1996)

    Article  Google Scholar 

  29. J. Yin, X. Li, J. Jing, J. Li, D. Mukai, S. Mahon, A. Edris, K. Hoang, K.K. Shung, M. Brenner, J. Narula, Q. Zhou, Z. Chen, Novel combined miniature optical coherence tomography ultrasound probe for in vivo intravascular imaging. J. Biomed. Opt. 16(6), 060505 (2011)

    Article  ADS  Google Scholar 

  30. J. Yin, H.C. Yang, X. Li, J. Zhang, Q. Zhou, C. Hu, K.K. Shung, Z. Chen, Integrated intravascular optical coherence tomography ultrasound imaging system. J. Biomed. Opt. 15(1), 010512 (2010)

    Article  ADS  Google Scholar 

  31. X. Li, J. Yin, C. Hu, Q. Zhou, K.K. Shung, Z. Chen, High-resolution coregistered intravascular imaging with integrated ultrasound and optical coherence tomography probe. Appl. Phys. Lett. 97(13), 133702 (2010)

    Article  ADS  Google Scholar 

  32. S. Waxman, S.R. Dixon, P. L’Allier, J.W. Moses, J.L. Petersen, D. Cutlip, J.C. Tardif, R.W. Nesto, J.E. Muller, M.J. Hendricks, S.T. Sum, C.M. Gardner, J.A. Goldstein, G.W. Stone, M.W. Krucoff, In vivo validation of a catheter-based near-infrared spectroscopy system for detection of lipid core coronary plaques: initial results of the SPECTACL study. JACC Cardiovasc. Imaging 2(7), 858–868 (2009)

    Article  Google Scholar 

  33. H.P. Buschman, E.T. Marple, M.L. Wach, B. Bennett, T.C. Schut, H.A. Bruining, A.V. Bruschke, A. van der Laarse, G.J. Puppels, In vivo determination of the molecular composition of artery wall by intravascular Raman spectroscopy. Anal. Chem. 72(16), 3771–3775 (2000)

    Article  Google Scholar 

  34. T.J. Romer, J.F. Brennan 3, G.J. Puppels, A.H. Zwinderman, S.G. van Duinen, A. van der Laarse, A.F. van der Steen, N.A. Bom, A.V. Bruschke, Intravascular ultrasound combined with Raman spectroscopy to localize and quantify cholesterol and calcium salts in atherosclerotic coronary arteries. Arterioscler. Thromb. Vasc. Biol. 20(2), 478–483 (2000)

    Article  Google Scholar 

  35. F.A. Jaffer, C. Vinegoni, M.C. John, E. Aikawa, H.K. Gold, A.V. Finn, V. Ntziachristos, P. Libby, R. Weissleder, Real-time catheter molecular sensing of inflammation in proteolytically active atherosclerosis. Circulation 118(18), 1802–1809 (2008)

    Article  Google Scholar 

  36. L. Marcu, J.A. Jo, Q. Fang, T. Papaioannou, T. Reil, J.H. Qiao, J.D. Baker, J.A. Freischlag, M.C. Fishbein, Detection of rupture-prone atherosclerotic plaques by time-resolved laser-induced fluorescence spectroscopy. Atherosclerosis 204(1), 156–164 (2009)

    Article  Google Scholar 

  37. L. Marcu, Fluorescence lifetime in cardiovascular diagnostics. J. Biomed. Opt. 15(1), 011106 (2010)

    Article  ADS  Google Scholar 

  38. H.W. Wang, I.M. Langohr, M. Sturek, J.X. Cheng, Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy. Arterioscler. Thromb. Vasc. Biol. 29(9), 1342–1348 (2009)

    Article  Google Scholar 

  39. R.S. Lim, A. Kratzer, N.P. Barry, S. Miyazaki-Anzai, M. Miyazaki, W.W. Mantulin, M. Levi, E.O. Potma, B.J. Tromberg, Multimodal CARS microscopy determination of the impact of diet on macrophage infiltration and lipid accumulation on plaque formation in ApoE-deficient mice. J. Lipid Res. 51(7), 1729–1737 (2010)

    Article  Google Scholar 

  40. S. Liang, A. Saidi, J. Jing, G. Liu, J. Li, J. Zhang, C. Sun, J. Narula, Z. Chen, Intravascular atherosclerotic imaging with combined fluorescence and optical coherence tomography probe based on a double-clad fiber combiner. J. Biomed. Opt. 17(7), 070501 (2012)

    Article  ADS  Google Scholar 

  41. R.A. Baldewsing, J.A. Schaar, C.L. de Korte, F. Mastik, P.W. Serruys, A.F. van der Steen, Intravascular ultrasound elastography: a clinician’s tool for assessing vulnerability and material composition of plaques. Stud. Health Technol. Inform. 113, 75–96 (2005)

    Google Scholar 

  42. C.L. de Korte, A.F. van der Steen, Intravascular ultrasound elastography: an overview. Ultrasonics 40(1–8), 859–865 (2002)

    Article  Google Scholar 

  43. C.L. de Korte, M.J. Sierevogel, F. Mastik, C. Strijder, J.A. Schaar, E. Velema, G. Pasterkamp, P.W. Serruys, A.F. van der Steen, Identification of atherosclerotic plaque components with intravascular ultrasound elastography in vivo: a Yucatan pig study. Circulation 105(14), 1627–1630 (2002)

    Article  Google Scholar 

  44. J.D. Allen, K.L. Ham, D.M. Dumont, B. Sileshi, G.E. Trahey, J.J. Dahl, The development and potential of acoustic radiation force impulse (ARFI) imaging for carotid artery plaque characterization. Vasc. Med. 16(4), 302–311 (2011)

    Article  Google Scholar 

  45. J. Rogowska, N.A. Patel, J.G. Fujimoto, M.E. Brezinski, Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues. Heart 90(5), 556–562 (2004)

    Article  Google Scholar 

  46. W. Qi, R. Chen, L. Chou, G. Liu, J. Zhang, Q. Zhou, Z. Chen, Phase-resolved acoustic radiation force optical coherence elastography, J. Biomed. Opt. 17, 110505 (2012)

    Google Scholar 

  47. R. Virmani, A.P. Burke, A. Farb, F.D. Kolodgie, Pathology of the unstable plaque. Prog. Cardiovasc. Dis. 44(5), 349–356 (2002)

    Article  Google Scholar 

  48. L. Landini, L. Verrazzani, Spectral characterization of tissues microstructure by ultrasounds – a stochastic approach. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 37(5), 448–456 (1990)

    Article  Google Scholar 

  49. S.W.E. van de Poll, C.L. de Korte, A.F.W. van der Steen, G.J. Puppels, A. van der Laarse, Coronary atherosclerotic plaque characterization using IVUS elastography and Raman spectroscopy, in 2000 I.E. Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.00CH37121)|2000 I.E. Ultrasonics Symposium. Proceedings. An International Symposium (Cat. No.00CH37121), 10.1109/ULTSYM.2000.921666 (2000)

    Google Scholar 

  50. A.F. Low, G.J. Tearney, B.E. Bouma, I.K. Jang, Technology insight: optical coherence tomography – current status and future development. Nat. Clin. Pract. Cardiovasc. Med. 3, 154–162 (2005)

    Article  Google Scholar 

  51. A. Sukiennik, M. Radomski, M. Rychter, J. Kubica, Usefulness of optical coherence tomography in the assessment of atherosclerotic culprit lesions in acute coronary syndromes. Comparison with intravascular ultrasound and virtual histology. Cardiol. J. 15, 561–566 (2008)

    Google Scholar 

  52. P.M. Patel, Z. Chen, When the doctor needs an engineer to be the matchmaker. EuroIntervention 8(1), 19–23 (2012)

    Article  Google Scholar 

  53. L. Raber, J.H. Heo, M.D. Radu, H.M. Garcia-Garcia, G.G. Stefanini, A. Moschovitis, J. Dijkstra, H. Kelbaek, S. Windecker, P.W. Serruys, Offline fusion of co-registered intravascular ultrasound and frequency domain optical coherence tomography images for the analysis of human atherosclerotic plaques. EuroIntervention 8(1), 98–108 (2012)

    Article  Google Scholar 

  54. M.A. Calfon, C. Vinegoni, V. Ntziachristos, F.A. Jaffer, Intravascular near-infrared fluorescence molecular imaging of atherosclerosis: toward coronary arterial visualization of biologically high-risk plaques. J. Biomed. Opt. 15(1), 011107 (2010)

    Article  ADS  Google Scholar 

  55. P. Libby, Inflammation in atherosclerosis. Nature 420(6917), 868–874 (2002)

    Article  ADS  Google Scholar 

  56. B.L. Kietselaer, C.P. Reutelingsperger, G.A. Heidendal, M.J. Daemen, W.H. Mess, L. Hofstra, J. Narula, Noninvasive detection of plaque instability with use of radiolabeled annexin A5 in patients with carotid-artery atherosclerosis. N. Engl. J. Med. 350(14), 1472–1473 (2004)

    Article  Google Scholar 

  57. J. Su, J. Zhang, L. Yu, Z. Chen, in vivo three-dimensional microelectromechanical endoscopic swept source optical coherence tomography. Opt. Express 15, 10390–10396 (2007)

    Article  ADS  Google Scholar 

  58. J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, X. Li, Elastography: a quantitative method for imaging the elasticity in biological tissues. Ultrason. Imaging 13, 111–134 (1991)

    Article  Google Scholar 

  59. K.J. Glaser, A. Manduca, R.L. Ehman, Review of MR elastography applications and recent developments. J. Magn. Reson. Imaging 36(4), 757–774 (2012)

    Article  Google Scholar 

  60. J.A. Schaar, C.L. de Korte, F. Mastik, C. Strijder, G. Pasterkamp, E. Boersma, P.W. Serruys, A.F.W. van der Steen, Characterizing vulnerable plaque features with intravascular elastography. Circulation 108(21), 2636–2641 (2003)

    Article  Google Scholar 

  61. P.-F. Zhang, H.-J. Su, M. Zhang, J.-F. Li, C.-X. Liu, S.-F. Ding, Y. Miao, L. Chen, X.-N. Li, X. Yi, Y. Zhang, Atherosclerotic plaque components characterization and macrophage infiltration identification by intravascular ultrasound elastography based on b-mode analysis: validation in vivo. Int. J. Cardiovasc. Imaging 27(1), 39–49 (2011)

    Article  Google Scholar 

  62. R.A. Baldewsing, J.A. Schaar, C.L. d. Korte, F. Mastik, P.W. Serruys, A.F.W. v.d. Steen, Intravascular ultrasound elastography: a clinician’s tool for assessing vulnerability and material composition of plaques, in Plaque Imaging: Pixel to Molecular Level, ed. by J.S. Suri, C. Yuan, D.L. Wilson, and S. Laxminarayan (IOS Press, Washington DC, 2005), pp. 75–96

    Google Scholar 

  63. F. Prati, E. Arbustini, A. Labellarte, B. Dal Bello, L. Sommariva, M.T. Mallus, A. Pagano, A. Boccanelli, Correlation between high frequency intravascular ultrasound and histomorphology in human coronary arteries. Heart 85(5), 567–570 (2001)

    Article  Google Scholar 

  64. J.M. Schmitt, OCT elastography: imaging microscopic deformation and strain of tissue. Opt. Express 3(6), 199 (1998)

    Article  ADS  Google Scholar 

  65. J.F. Greenleaf, M. Fatemi, M. Insana, Selected methods for imaging elastic properties of biological tissues. Annu. Rev. Biomed. Eng. 5, 57–78 (2003)

    Article  Google Scholar 

  66. M. Fatemi, J.F. Greenleaf, Ultrasound-stimulated vibro-acoustic spectrography. Science 280(5360), 82–85 (1998)

    Article  ADS  Google Scholar 

  67. J. Zhang, B. Rao, L. Yu, Z. Chen, High-dynamic-range quantitative phase imaging with spectral domain phase microscopy. Opt. Lett. 34(21), 3442–3444 (2009)

    Article  ADS  Google Scholar 

  68. M. Razani, A. Mariampillai, C. Sun, T.W. Luk, V.X. Yang, M.C. Kolios, Feasibility of optical coherence elastography measurements of shear wave propagation in homogeneous tissue equivalent phantoms. Biomed. Opt.Express 3(5), 972–980 (2012)

    Article  Google Scholar 

  69. C. Li, G. Guan, X. Cheng, Z. Huang, R.K. Wang, Quantitative elastography provided by surface acoustic waves measured by phase-sensitive optical coherence tomography. Opt. Lett. 37(4), 722–724 (2012)

    Article  ADS  Google Scholar 

  70. G.W. Stone, A. Maehara, A.J. Lansky, B. de Bruyne, E. Cristea, G.S. Mintz, R. Mehran, J. McPherson, N. Farhat, S.P. Marso, H. Parise, B. Templin, R. White, Z. Zhang, P.W. Serruys, A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med. 364(3), 226–235 (2011)

    Article  Google Scholar 

  71. J.J. Wykrzykowska, G.S. Mintz, H.M. Garcia-Garcia, A. Maehara, M. Fahy, K. Xu, A. Inguez, J. Fajadet, A. Lansky, B. Templin, Z. Zhang, B. de Bruyne, G. Weisz, P.W. Serruys, G.W. Stone, Longitudinal distribution of plaque burden and necrotic core-rich plaques in nonculprit lesions of patients presenting with acute coronary syndromes. JACC Cardiovasc. Imaging 5(3 Suppl), S10–S18 (2012)

    Article  Google Scholar 

  72. J.A. McPherson, A. Maehara, G. Weisz, G.S. Mintz, E. Cristea, R. Mehran, M. Foster, S. Verheye, L. Rabbani, K. Xu, M. Fahy, B. Templin, Z. Zhang, A.J. Lansky, B. de Bruyne, P.W. Serruys, G.W. Stone, Residual plaque burden in patients with acute coronary syndromes after successful percutaneous coronary intervention. JACC Cardiovasc. Imaging 5(3 Suppl), S76–S85 (2012)

    Article  Google Scholar 

  73. S.J. Brener, G.S. Mintz, E. Cristea, G. Weisz, A. Maehara, J.A. McPherson, S.P. Marso, N. Farhat, H.E. Botker, O. Dressler, K. Xu, B. Templin, Z. Zhang, A.J. Lansky, B. de Bruyne, P.W. Serruys, G.W. Stone, Characteristics and clinical significance of angiographically mild lesions in acute coronary syndromes. JACC Cardiovasc. Imaging 5(3 Suppl), S86–S94 (2012)

    Article  Google Scholar 

  74. E.A. Sanidas, A. Maehara, G.S. Mintz, T. Kashiyama, J. Guo, J. Pu, Y. Shang, B. Claessen, G.D. Dangas, M.B. Leon, J.W. Moses, G.W. Stone, Y. Ueda, Angioscopic and virtual histology intravascular ultrasound characteristics of culprit lesion morphology underlying coronary artery thrombosis. Am. J. Cardiol. 107(9), 1285–1290 (2012)

    Article  Google Scholar 

  75. A.J. Lansky, V.G. Ng, A. Maehara, G. Weisz, A. Lerman, G.S. Mintz, B. De Bruyne, N. Farhat, G. Niess, I. Jankovic, D. Lazar, K. Xu, M. Fahy, P.W. Serruys, G.W. Stone, Gender and the extent of coronary atherosclerosis, plaque composition, and clinical outcomes in acute coronary syndromes. JACC Cardiovasc. Imaging 5(3 Suppl), S62–S72 (2012)

    Article  Google Scholar 

  76. P.A. Calvert, D.R. Obaid, M. O’Sullivan, L.M. Shapiro, D. McNab, C.G. Densem, P.M. Schofield, D. Braganza, S.C. Clarke, K.K. Ray, N.E. West, M.R. Bennett, Association between IVUS findings and adverse outcomes in patients with coronary artery disease: the VIVA (VH-IVUS in Vulnerable Atherosclerosis) Study. JACC Cardiovasc. Imaging 4(8), 894–901 (2012)

    Article  Google Scholar 

  77. A.V. Finn, Y. Chandrashekhar, J. Narula, Vulnerable plaques: from PROSPECT to prospects…. J. Am. Coll. Cardiovasc. Imaging 5, 334–336 (2012)

    Article  Google Scholar 

  78. G.W. Stone, A. Maehara, G.S. Mintz, The reality of vulnerable plaque detection. JACC Cardiovasc. Imaging 4(8), 902–904 (2011)

    Article  Google Scholar 

  79. J.L. Fleg, G.W. Stone, Z.A. Fayad, J.F. Granada, T.S. Hatsukami, F.D. Kolodgie, J. Ohayon, R. Pettigrew, M.S. Sabatine, G.J. Tearney, S. Waxman, M.J. Domanski, P.R. Srinivas, J. Narula, Detection of high-risk atherosclerotic plaque: report of the NHLBI Working Group on current status and future directions. JACC Cardiovasc. Imaging 5(9), 941–955 (2012)

    Article  Google Scholar 

  80. J. Narula, V. Dilsizian, From better understood pathogenesis to superior molecular imaging, and back. JACC Cardiovasc. Imaging 1(3), 406–409 (2008)

    Article  Google Scholar 

  81. E. Braunwald, Epilogue: what do clinicians expect from imagers? J. Am. Coll. Cardiol. 47(8 Suppl), C101–C103 (2006)

    Article  Google Scholar 

  82. D.H. Kusters, J. Tegtmeier, L.J. Schurgers, C.P. Reutelingsperger, Molecular imaging to identify the vulnerable plaque–from basic research to clinical practice. Mol. Imaging Biol. 14(5), 523–533 (2012)

    Article  Google Scholar 

  83. J.S. Suri, C. Kathuria, F. Molinari, Atherosclerosis disease management (Springer, London, 2011)

    Book  Google Scholar 

  84. M.E. Brezinski, Current capabilities and challenges for optical coherence tomography as a high-impact cardiovascular imaging modality. Circulation 123(25), 2913–2915 (2012)

    Article  Google Scholar 

  85. B. Meier, Plaque sealing by coronary angioplasty. Heart 90(12), 1395–1398 (2004)

    Article  Google Scholar 

  86. J.J. Wykrzykowska, R. Diletti, J.L. Gutierrez-Chico, R.J. van Geuns, W.J. van der Giessen, S. Ramcharitar, H.E. Duckers, C. Schultz, P. de Feyter, M. van der Ent, E. Regar, P. de Jaegere, H.M. Garcia-Garcia, R. Pawar, N. Gonzalo, J. Ligthart, J. de Schepper, N. van den Berg, K. Milewski, J.F. Granada, P.W. Serruys, Plaque sealing and passivation with a mechanical self-expanding low outward force nitinol vShield device for the treatment of IVUS and OCT-derived thin cap fibroatheromas (TCFAs) in native coronary arteries: report of the pilot study vShield Evaluated at Cardiac hospital in Rotterdam for Investigation and Treatment of TCFA (SECRITT). EuroIntervention 8, 945–954 (2012)

    Article  Google Scholar 

  87. D.J. Kereiakes, A.M. Szyniszewski, D. Wahr, H.C. Herrmann, D.I. Simon, C. Rogers, P. Kramer, W. Shear, A.C. Yeung, K.A. Shunk, T.M. Chou, J. Popma, P. Fitzgerald, T.E. Carroll, D. Forer, D.C. Adelman, Phase I drug and light dose-escalation trial of motexafin lutetium and far red light activation (phototherapy) in subjects with coronary artery disease undergoing percutaneous coronary intervention and stent deployment: procedural and long-term results. Circulation 108(11), 1310–1315 (2003)

    Article  Google Scholar 

  88. M. Oberhoff, K.R. Karsch, Who wants his plaque sealed? Eur. Heart J. 24(6), 494–495 (2003)

    Article  Google Scholar 

  89. N. Carter-Monroe, S.K. Yazdani, E. Ladich, F.D. Kolodgie, R. Virmani, Introduction to the pathology of carotid atherosclerosis: histologic classification and imaging correlation, in Atherosclerosis disease management, ed. by J.S. Suri, C. Kathuria, F. Molinari (Springer, New York, 2011), p. 3

    Chapter  Google Scholar 

Download references

Acknowledgments

I would like to thank many of our colleagues who have contributed to the intravascular imaging project at UCI Beckman Laser Institute, Department of Medicine Cardiology Division, and Department of Biomedical Engineering, particularly the students and postdoctoral fellows. In addition, I would like to thank my collaborators, Drs. Qifa Zhou and K. Kirk Shung, as well as their students at USC NIH Ultrasonic Transducer Resource Center and Department of Biomedical Engineering, for joint development of miniature ultrasound transducers for the intravascular imaging project. Finally, I also want to acknowledge grants support from the National Institutes of Health (R01EB-10090, R01EY-021529, R01HL-105215, R01HL-125084, and P41EB-015890), Air Force Office of Scientific Research (FA9550-04-0101), and the Beckman Laser Institute Endowment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongping Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Chen, Z. (2015). Development of Integrated Multimodality Intravascular Imaging System for Assessing and Characterizing Atherosclerosis. In: Drexler, W., Fujimoto, J. (eds) Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-06419-2_73

Download citation

Publish with us

Policies and ethics