Skip to main content

Doppler Fourier Domain Optical Coherence Tomography for Label-Free Tissue Angiography

  • Reference work entry
Optical Coherence Tomography

Abstract

Information about tissue perfusion and the vascular structure is certainly most important for assessment of tissue state or personal health and the diagnosis of any pathological conditions. It is therefore of key medical interest to have tools available for both quantitative blood flow assessment as well as qualitative vascular imaging. The strength of optical techniques is the unprecedented level of detail even for small capillary structures or microaneurysms and the possibility to combine different techniques for additional tissue spectroscopy giving insight into tissue metabolism. There is an immediate diagnostic and pharmacological demand for high-resolution, label-free, tissue angiography and flow assessment that in addition allow for precise depth gating of flow information. The most promising candidate is Doppler optical coherence tomography (DOCT) being noncontact, label free, and without employing hazardous radiation. DOCT provides fully quantitative volumetric information about blood flow together with the vascular and structural anatomy. Besides flow quantification, analysis of OCT signal fluctuations allows to contrast moving scatterers in tissue such as red blood cells from static tissue. This allows for non-invasive optical angiography and yields high resolution even for smallest capillaries. Because of the huge potential of DOCT and lable-free optical angiography for diagnosis, the last years saw a rapid increase of publications in this field with many different approaches. The present chapter gives an overview over existing Doppler OCT approaches and angiography techniques. It furthermore discusses limitations and noise issues, and gives examples for angiography in the eye and the skin.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Bonner, R. Nossal, Model for laser Doppler measurements of blood flow in tissue. Appl. Optics 20, 2097–2107 (1981)

    Article  ADS  Google Scholar 

  2. B.H. Park, M.C. Pierce, B. Cense, S.H. Yun, M. Mujat, G. Tearney, B. Bouma, J. de Boer, Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm. Opt. Express 13, 3931–3944 (2005)

    Article  ADS  Google Scholar 

  3. S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R.A. Leitgeb, C.K. Hitzenberger, Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography. Opt. Express 19, 1217–1227 (2011)

    Article  ADS  Google Scholar 

  4. E. Friedman, A hemodynamic model of the pathogenesis of age-related macular degeneration. Am. J. Ophthalmol. 124, 677–682 (1997)

    Article  Google Scholar 

  5. L. Schmetterer, M. Wolzt, Ocular blood flow and associated functional deviations in diabetic retinopathy. Diabetologia 42, 387–405 (1999)

    Article  Google Scholar 

  6. C.E. Riva, S.D. Cranstoun, J.E. Grunwald, B.L. Petrig, Choroidal blood flow in the foveal region of the human disc. Invest. Ophthalmol. Vis. Sci. 35, 4273–4281 (1994)

    Google Scholar 

  7. R.F. Furchgott, J.V. Zawadzki, The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288, 373–376 (1980)

    Article  ADS  Google Scholar 

  8. M. Lie, O.M. Sejersted, F. Kiil, Local regulation of vascular cross section during changes in femoral arterial blood flow in dogs. Circ. Res. 27, 727–737 (1970)

    Article  Google Scholar 

  9. W. Drexler, R.A. Leitgeb, C.K. Hitzenberger, New developments in optical coherence tomography technology, in Medical Retina, ed. by R.F. Spaide (Springer, Berlin, 2009), p. 277

    Google Scholar 

  10. R.A. Leitgeb, Current technologies for high-speed and functional imaging with optical coherence tomography, in Advances in Imaging and Electron Physics, ed. by P.W. Hawkes, vol. 168 (Elsevier Academic, San Diego, 2011), pp. 109–192

    Google Scholar 

  11. T. Schmoll, A.S.G. Singh, C. Blatter, S. Schriefl, C. Ahlers, U. Schmidt-Erfurth, R.A. Leitgeb, Imaging of the parafoveal capillary network and its integrity analysis using fractal dimension. Biomed. Opt. Express 2, 1159–1168 (2011)

    Article  Google Scholar 

  12. B.J. Vakoc, R.M. Lanning, J.A. Tyrrell, T.P. Padera, L.A. Bartlett, T. Stylianopoulos, L.L. Munn, G.J. Tearney, D. Fukumura, R.K. Jain, B.E. Bouma, Three-dimensional microscopy of the tumor microenvironment in vivo using optical frequency domain imaging. Nat. Med. 15, 1219–1223 (2009)

    Article  Google Scholar 

  13. S. Yazdanfar, A.M. Rollins, J.A. Izatt, Imaging and velocimetry of the human retinal circulation with color Doppler optical coherence tomography. Opt. Lett. 25, 1448–1450 (2000)

    Article  ADS  Google Scholar 

  14. S. Yazdanfar, A.M. Rollins, J. Izatt, In vivo imaging of human retinal flow dynamics by color Doppler optical coherence tomography. Arch. Ophthalmol. 121, 235–239 (2003)

    Article  Google Scholar 

  15. Y. Zhao, Z. Chen, C. Saxer, Q. Shen, S. Xiang, J.F. de Boer, J.S. Nelson, Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow. Opt. Lett. 25, 1358–1360 (2000)

    Article  ADS  Google Scholar 

  16. C. Yang, A. Wax, M.S. Hahn, K. Badizadegan, R.R. Dasari, M.S. Feld, Phase-referenced interferometer with subwavelength and subhertz sensitivity applied to the study of cell membrane dynamics. Opt. Lett. 26, 1271–1273 (2001)

    Article  ADS  Google Scholar 

  17. Y. Zhao, Z. Chen, C. Saxer, S. Xiang, J.F. de Boer, J.S. Nelson, Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt. Lett. 25, 116 (2000)

    ADS  Google Scholar 

  18. A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. Elzaiat, Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 117, 43–48 (1995)

    Article  ADS  Google Scholar 

  19. R. Leitgeb, C.K. Hitzenberger, A.F. Fercher, Performance of Fourier domain vs. time domain optical coherence tomography. Opt. Express 11, 889–894 (2003)

    Article  ADS  Google Scholar 

  20. J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, B.E. Bouma, Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28, 2067–2069 (2003)

    Article  ADS  Google Scholar 

  21. M.A. Choma, M.V. Sarunic, C. Yang, J. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11, 2183–2189 (2003)

    Article  ADS  Google Scholar 

  22. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A.F. Fercher, In vivo human retinal imaging by Fourier domain optical coherence tomography. J. Biomed. Opt. 7, 457–463 (2002)

    Article  ADS  Google Scholar 

  23. M. Wojtkowski, V. Srinivasan, J.G. Fujimoto, T. Ko, J.S. Schuman, A. Kowalczyk, J.S. Duker, Three-dimensional retinal imaging with high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 112, 1734–1746 (2005)

    Article  Google Scholar 

  24. U. Schmidt-Erfurth, R.A. Leitgeb, S. Michels, B. Povazay, S. Sacu, B. Hermann, C. Ahlers, H. Sattmann, C. Scholda, A.F. Fercher, W. Drexler, Three-dimensional ultrahigh-resolution optical coherence tomography of macular diseases. Invest. Ophthalmol. Vis. Sci. 46, 3393–3402 (2005)

    Article  Google Scholar 

  25. N. Nassif, B. Cense, B.H. Park, S.H. Yun, T.C. Chen, B.E. Bouma, G.J. Tearney, J.F. de Boer, In vivo human retinal imaging by ultrahigh-speed spectral domain optical coherence tomography. Opt. Lett. 29, 480–482 (2004)

    Article  ADS  Google Scholar 

  26. R.A. Leitgeb, L. Schmetterer, C.K. Hitzenberger, A.F. Fercher, F. Berisha, M. Wojtkowski, T. Bajraszewski, Real-time measurement of in vitro flow by Fourier-domain color Doppler optical coherence tomography. Opt. Lett. 29, 171–173 (2004)

    Article  ADS  Google Scholar 

  27. B.R. White, M.C. Pierce, N. Nassif, B. Cense, B.H. Park, G.J. Tearney, B.E. Bouma, T.C. Chen, J.F. de Boer, In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical Doppler tomography. Opt. Express 11, 3490–3497 (2003)

    Article  ADS  Google Scholar 

  28. T. Schmoll, C. Kolbitsch, R.A. Leitgeb, Ultra-high-speed volumetric tomography of human retinal blood flow. Opt. Express 17, 4166–4176 (2009)

    Article  ADS  Google Scholar 

  29. A.H. Bachmann, M.L. Villiger, C. Blatter, T. Lasser, R.A. Leitgeb, Resonant Doppler flow imaging and optical vivisection of retinal blood vessels. Opt. Express 15, 408–422 (2007)

    Article  ADS  Google Scholar 

  30. L. An, R.K. Wang, In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. Opt. Express 16, 11438–11452 (2008)

    Article  ADS  Google Scholar 

  31. M. Szkulmowski, A. Szkulmowska, T. Bajraszewski, A. Kowalczyk, M. Wojtkowski, Flow velocity estimation using joint spectral and time domain optical coherence tomography. Opt. Express 16, 6008–6025 (2008)

    Article  ADS  Google Scholar 

  32. Y.K. Tao, A.M. Davis, J.A. Izatt, Single-pass volumetric bidirectional blood flow imaging spectral domain optical coherence tomography using a modified Hilbert transform. Opt. Express 16, 12350–12361 (2008)

    Article  ADS  Google Scholar 

  33. C. Kolbitsch, T. Schmoll, R.A. Leitgeb, Histogram-based filtering for quantitative 3D retinal angiography. J. Biophotonics 2, 416–425 (2009)

    Article  Google Scholar 

  34. R.A. Leitgeb, L. Schmetterer, W. Drexler, A.F. Fercher, R.J. Zawadzki, T. Bajraszewski, Real-time assessment of retinal blood flow with ultrafast acquisition by color Doppler Fourier domain optical coherence tomography. Opt. Express 11, 3116–3121 (2003)

    Article  ADS  Google Scholar 

  35. C. Blatter, J. Weingast, A. Alex, B. Grajciar, W. Wieser, W. Drexler, R. Huber, R.A. Leitgeb, In situ structural and microangiographic assessment of human skin lesions with high-speed OCT. Biomed. Opt. Express 3, 2636–2646 (2012)

    Article  Google Scholar 

  36. J.W. Goodman, Statistical Optics (Wiley, New York, 2000)

    Google Scholar 

  37. B.J. Vakoc, S.H. Yun, J.F. De Boer, G.J. Tearney, B.E. Bouma, Phase-resolved optical frequency domain imaging. Opt. Express 13, 5483–5493 (2005)

    Article  ADS  Google Scholar 

  38. M. Gora, K. Karnowski, M. Szkulmowski, B.J. Kaluzny, R. Huber, A. Kowalczyk, M. Wojtkowski, Ultra high-speed swept source OCT imaging of the anterior segment of human eye at 200 kHz with adjustable imaging range. Opt. Express 17, 14880–14894 (2009)

    Article  ADS  Google Scholar 

  39. D.J. Faber, T.G. van Leeuwen, Doppler calibration method for spectral domain OCT spectrometers. J. Biophotonics 2, 407–415 (2009)

    Article  Google Scholar 

  40. D.Q. Piao, Q. Zhu, Quantifying Doppler angle and mapping flow velocity by a combination of Doppler-shift and Doppler-bandwidth measurements in optical Doppler tomography. Appl. Optics 42, 5158–5166 (2003)

    Article  ADS  Google Scholar 

  41. D.Q. Piao, L.L. Otis, Q. Zhu, Doppler angle and flow velocity mapping by combined Doppler shift and Doppler bandwidth measurements in optical Doppler tomography. Opt. Lett. 28, 1120–1122 (2003)

    Article  ADS  Google Scholar 

  42. S.G. Proskurin, Y. He, R.K. Wang, Determination of flow velocity and spectrum broadening with vector based on Doppler shift optical coherence tomography. Opt. Lett. 28, 1227–1229 (2003)

    Article  ADS  Google Scholar 

  43. J. Walther, E. Koch, Enhanced joint spectral and time domain optical coherence tomography for quantitative flow velocity measurement. Opt. Coherence Tomogr. Coherence Tech. V 8091, 22 (2011)

    Google Scholar 

  44. D.Y. Kim, J. Fingler, J.S. Werner, D.M. Schwartz, S.E. Fraser, R.J. Zawadzki, In vivo volumetric imaging of human retinal circulation with phase-variance optical coherence tomography. Biomed. Opt. Express 2, 1504–1513 (2011)

    Article  Google Scholar 

  45. T. Klein, W. Wieser, C.M. Eigenwillig, B.R. Biedermann, R. Huber, Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser. Opt. Express 19, 3044–3062 (2011)

    Article  ADS  Google Scholar 

  46. Y. Yasuno, Y. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, T. Yatagai, In vivo high-contrast imaging of deep posterior eye by 1-um swept source optical coherence tomography and scattering optical coherence angiography. Opt. Express 15, 6121–6139 (2007)

    Article  ADS  Google Scholar 

  47. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, W. Drexler, In vivo retinal optical coherence tomography at 1040 nm – enhanced penetration into the choroid. Opt. Express 13, 3252–3258 (2005)

    Article  ADS  Google Scholar 

  48. C. Blatter, T. Klein, B. Grajciar, T. Schmoll, W. Wieser, R. Andre, R. Huber, R.A. Leitgeb, Ultrahigh-speed non-invasive widefield angiography. J. Biomed. Opt. 17, 070505 (2012)

    Article  ADS  Google Scholar 

  49. F. Jaillon, S. Makita, Y. Yasuno, Variable velocity range imaging of the choroid with dual-beam optical coherence angiography. Opt. Express 20, 385–396 (2012)

    Article  ADS  Google Scholar 

  50. F. Jaillon, S. Makita, E.-J. Min, B.H. Lee, Y. Yasuno, Enhanced imaging of choroidal vasculature by high-penetration and dual-velocity optical coherence angiography. Biomed. Opt. Express 2, 1147–1158 (2011)

    Article  Google Scholar 

  51. A. Szkulmowska, M. Szkulmowski, D. Szlag, A. Kowalczyk, M. Wojtkowski, Three-dimensional quantitative imaging of retinal and choroidal blood flow velocity using joint spectral and time domain optical coherence tomography. Opt. Express 17, 10584–10598 (2009)

    Article  ADS  Google Scholar 

  52. I. Grulkowski, I. Gorczynska, M. Szkulmowski, D. Szlag, A. Szkulmowska, R.A. Leitgeb, A. Kowalczyk, M. Wojtkowski, Scanning protocols dedicated to smart velocity ranging in spectral OCT. Opt. Express 17, 23736–23754 (2009)

    Article  ADS  Google Scholar 

  53. T. Gambichler, V. Jaedicke, S. Terras, Optical coherence tomography in dermatology: technical and clinical aspects. Arch. Dermatol. Res. 303, 457–473 (2011)

    Article  Google Scholar 

  54. Y.H. Zhao, K.M. Brecke, H.W. Ren, Z.H. Ding, J.S. Nelson, Z.P. Chen, Three-dimensional reconstruction of in vivo blood vessels in human skin using phase-resolved optical Doppler tomography. IEEE J. Sel Top. Quant. Electron. 7, 931–935 (2001)

    Article  Google Scholar 

  55. G. Liu, W. Jia, V. Sun, B. Choi, Z. Chen, High-resolution imaging of microvasculature in human skin in-vivo with optical coherence tomography. Opt. Express 20, 7694–7705 (2012)

    Article  ADS  Google Scholar 

  56. J. Enfield, E. Jonathan, M. Leahy, In vivo imaging of the microcirculation of the volar forearm using correlation mapping optical coherence tomography (cmOCT). Biomed. Opt. Express 2, 1184–1193 (2011)

    Article  Google Scholar 

  57. L. An, J. Qin, R.K. Wang, Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds. Opt. Express 18, 8220–8228 (2010)

    Article  ADS  Google Scholar 

  58. J. Qin, J. Jiang, L. An, D. Gareau, R.K. Wang, In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography. Lasers Surg. Med. 43, 122–129 (2011)

    Article  Google Scholar 

  59. R.A. Leitgeb, M. Villiger, A.H. Bachmann, L. Steinmann, T. Lasser, Extended focus depth for Fourier domain optical coherence microscopy. Opt. Lett. 31, 2450–2452 (2006)

    Article  ADS  Google Scholar 

  60. A. Alex, B. Povazay, B. Hofer, S. Popov, C. Glittenberg, S. Binder, W. Drexler, Multispectral in vivo three-dimensional optical coherence tomography of human skin. J. Biomed. Opt. 15, 026025 (2010)

    Article  ADS  Google Scholar 

  61. W. Wieser, B.R. Biedermann, T. Klein, C.M. Eigenwillig, R. Huber, Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. Opt. Express 18, 14685–14704 (2010)

    Article  ADS  Google Scholar 

  62. C. Blatter, B. Grajciar, C.M. Eigenwillig, W. Wieser, B.R. Biedermann, R. Huber, R.A. Leitgeb, Extended focus high-speed swept source OCT with self-reconstructive illumination. Opt. Express 19, 12141–12155 (2011)

    Article  ADS  Google Scholar 

  63. D. Altamura, S.W. Menzies, G. Argenziano, I. Zalaudek, H.P. Soyer, F. Sera, M. Avramidis, K. DeAmbrosis, M.C. Fargnoli, K. Peris, Dermatoscopy of basal cell carcinoma: morphologic variability of global and local features and accuracy of diagnosis. J. Am. Acad. Dermatol. 62, 67–75 (2010)

    Article  Google Scholar 

  64. J.W. Baish, R.K. Jain, Fractals and cancer. Cancer Res. 60, 3683–3688 (2000)

    Google Scholar 

  65. M. Szkulmowski, I. Grulkowski, D. Szlag, A. Szkulmowska, A. Kowalczyk, M. Wojtkowski, Flow velocity estimation by complex ambiguity free joint spectral and time domain optical coherence tomography. Opt. Express 17, 14281–14297 (2009)

    Article  ADS  Google Scholar 

  66. A. Mariampillai, B.A. Standish, E.H. Moriyama, M. Khurana, N.R. Munce, M.K.K. Leung, J. Jiang, A. Cable, B.C. Wilson, I.A. Vitkin, V.X.D. Yang, Speckle variance detection of microvasculature using swept-source optical coherence tomography. Opt. Lett. 33, 1530–1532 (2008)

    Article  ADS  Google Scholar 

  67. J. Barton, S. Stromski, Flow measurement without phase information in optical coherence tomography images. Opt. Express 13, 5234–5239 (2005)

    Article  ADS  Google Scholar 

  68. E. Jonathan, J. Enfield, M.J. Leahy, Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images. J. Biophotonics 4, 583–587 (2011)

    Article  Google Scholar 

  69. R. Leitgeb, L. Schmetterer, M. Wojtkowski, C. Hitzenberger, M. Sticker, A. Fercher, Flow velocity measurements by frequency domain short coherence interferometry. SPIE Proc. 4619, 16–21 (2002)

    Article  ADS  Google Scholar 

  70. V. Yang, M. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. Wilson, I. Vitkin, High speed, wide velocity dynamic range Doppler optical coherence tomography (Part I): system design, signal processing, and performance. Opt. Express 11, 794–809 (2003)

    Article  ADS  Google Scholar 

  71. T. Schmoll, I.R. Ivascu, A.S.G. Singh, A. Unterhuber, R.A. Leitgeb, Intra-and Inter-Frame Differential Doppler Imaging, in Optical Coherence Tomography and Coherence Techniques, ed. by V.R.A. Leitgeb, B.E. Bouma (SPIE, Bellingham, 2011)

    Google Scholar 

  72. L. Yu, Z. Chen, Doppler variance imaging for three-dimensional retina and choroid angiography. J. Biomed. Opt. 15, 016029–016029 (2010)

    Article  ADS  Google Scholar 

  73. R.M. Werkmeister, N. Dragostinoff, M. Pircher, E. Götzinger, C.K. Hitzenberger, R.A. Leitgeb, L. Schmetterer, Bidirectional Doppler Fourier domain optical coherence tomography for measurement of absolute flow velocities in human retinal vessels. Opt. Lett. 33(24), 2967–2969 (2008)

    Article  ADS  Google Scholar 

  74. C.J. Pedersen, D. Huang, M.A. Shure, A.M. Rollins, Measurement of absolute flow velocity vector using dual-angle, delay-encoded Doppler optical coherence tomography. Opt. Lett. 32(5), 506–508 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank Leopold Schmetterer, Wolfgang Drexler, Amardeep Singh, Branislav Grajciar, Tilman Schmoll, Rene Werkmeister, Alex Aneesh, Michael Binder, and Jessica Weingast from the Medical University of Vienna; Andrzej Kowalczyk, Anna Szkulmowska, and Ireneusz Grulkowski from the Nicholas Copernicus University in Torun, Poland; and Robert Huber, Wolfgang Wieser, and Thomas Klein from the LMU Munich, Germany. We acknowledge funding from the EU FP7 program (FUN OCT, grant no. 201880), funding by the Austrian Christian Doppler Association and EURYI grant/award funded by the European Heads of Research Councils (EuroHORCs) together with the European Science Foundation (ESF – EURYI 01/2007PL) operated by the Foundation for Polish Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer A. Leitgeb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Leitgeb, R.A., Szkulmowski, M., Blatter, C., Wojtkowski, M. (2015). Doppler Fourier Domain Optical Coherence Tomography for Label-Free Tissue Angiography. In: Drexler, W., Fujimoto, J. (eds) Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-06419-2_43

Download citation

Publish with us

Policies and ethics