Skip to main content

MUW Approach of PS OCT

  • Reference work entry
Optical Coherence Tomography

Abstract

Polarization sensitive (PS) OCT is a functional extension of OCT that exploits the light’s polarization state to generate intrinsic, tissue specific contrast and enables quantitative measurements of tissue parameters. This chapter explains the technique, discusses polarization-changing light-tissue interactions and demonstrates the application of PS-OCT to retinal imaging. Two polarization-changing light-tissue interactions are discussed and their use for retinal diagnostics are demonstrated: (i) birefringence, which is found in fibrous tissues like the retinal nerve fiber layer and can be used for glaucoma diagnostics; and (ii) depolarization, which is observed in the retinal pigment epithelium (RPE) and can be used to segment the RPE and associated lesions like drusen or geographic atrophies in age related macular degeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography. Science 254, 1178–1181 (1991)

    Article  ADS  Google Scholar 

  2. W. Drexler, J.G. Fujimoto, State-of-the-art retinal optical coherence tomography. Prog. Retin. Eye Res. 27, 45–88 (2008)

    Article  Google Scholar 

  3. A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. Elzaiat, Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 117, 43–48 (1995)

    Article  ADS  Google Scholar 

  4. G. Häusler, M.W. Lindner, “Coherence radar” and “spectral radar” – new tools for dermatological diagnosis. J. Biomed. Opt. 3, 21–31 (1998)

    Article  Google Scholar 

  5. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A.F. Fercher, In vivo human retinal imaging by Fourier domain optical coherence tomography. J. Biomed. Opt. 7, 457–463 (2002)

    Article  ADS  Google Scholar 

  6. R. Leitgeb, C.K. Hitzenberger, A.F. Fercher, Performance of Fourier domain vs. time domain optical coherence tomography. Opt. Express 11, 889–894 (2003)

    Article  ADS  Google Scholar 

  7. J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, B.E. Bouma, Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28, 2067–2069 (2003)

    Article  ADS  Google Scholar 

  8. M.A. Choma, M.V. Sarunic, C.H. Yang, J.A. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11, 2183–2189 (2003)

    Article  ADS  Google Scholar 

  9. B. Potsaid, I. Gorczynska, V.J. Srinivasan, Y.L. Chen, J. Jiang, A. Cable, J.G. Fujimoto, Ultrahigh speed spectral/Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second. Opt. Express 16, 15149–15169 (2008)

    Article  ADS  Google Scholar 

  10. V.J. Srinivasan, D.C. Adler, Y. Chen, I. Gorczynska, R. Huber, J.S. Duker, J.S. Schuman, J.G. Fujimoto, Ultrahigh-speed optical coherence tomography for three-dimensional and en face imaging of the retina and optic nerve head. Invest. Ophthalmol. Vis. Sci. 49, 5103–5110 (2008)

    Article  Google Scholar 

  11. T. Klein, W. Wieser, C.M. Eigenwillig, B.R. Biedermann, R. Huber, Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode-locked laser. Opt. Express 19, 3044–3062 (2011)

    Article  ADS  Google Scholar 

  12. L. An, P. Li, T.T. Shen, R.K. Wang, High speed spectral domain optical coherence tomography for retinal imaging at 500,000 A-lines per second. Biomed. Opt. Express 2, 2770–2783 (2011)

    Article  Google Scholar 

  13. M.R. Hee, D. Huang, E.A. Swanson, J.G. Fujimoto, Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. J. Opt. Soc. Am. B Opt. Phys. 9, 903–908 (1992)

    Article  ADS  Google Scholar 

  14. J.F. de Boer, T.E. Milner, M.J.C. van Gemert, J.S. Nelson, Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt. Lett. 22, 934–936 (1997)

    Article  ADS  Google Scholar 

  15. B.H. Park, M.C. Pierce, B. Cense, J.F. de Boer, Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components. Opt. Lett. 29, 2512–2514 (2004)

    Article  ADS  Google Scholar 

  16. M. Todorovic, S.L. Jiao, L.V. Wang, Determination of local polarization properties of biological samples in the presence of diattenuation by use of Mueller optical coherence tomography. Opt. Lett. 29, 2402–2404 (2004)

    Article  ADS  Google Scholar 

  17. N.J. Kemp, H.N. Zaatari, J. Park, H.G. Rylander, T.E. Milner, Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT). Opt. Express 13, 4611–4628 (2005)

    Article  ADS  Google Scholar 

  18. L.J. Bour, Polarized light and the eye, in Visual Optics and Instrumentation, ed. by W.N. Charman (CRC Press, Boca Raton, 1991), pp. 310–325

    Google Scholar 

  19. E. Götzinger, M. Pircher, M. Sticker, A.F. Fercher, C.K. Hitzenberger, Measurement and imaging of birefringent properties of the human cornea with phase-resolved, polarization-sensitive optical coherence tomography. J. Biomed. Opt. 9, 94–102 (2004)

    Article  Google Scholar 

  20. M. Yamanari, S. Makita, Y. Yasuno, Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation. Opt. Express 16, 5892–5906 (2008)

    Article  ADS  Google Scholar 

  21. B. Baumann, E. Götzinger, M. Pircher, C.K. Hitzenberger, Single camera based spectral domain polarization sensitive optical coherence tomography. Opt. Express 15, 1054–1063 (2007)

    Article  ADS  Google Scholar 

  22. R.N. Weinreb, A.W. Dreher, A. Coleman, H. Quigley, B. Shaw, K. Reiter, Histopathologic validation of Fourier-ellipsometry measurements of retinal nerve-fiber layer thickness. Arch. Ophthalmol. 108, 557–560 (1990)

    Article  Google Scholar 

  23. B. Cense, T.C. Chen, B.H. Park, M.C. Pierce, J.F. de Boer, Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 45, 2606–2612 (2004)

    Article  Google Scholar 

  24. H.B. Klein Brink, G.J. van Blokland, Birefringence of the human foveal area assessed in vivo with Mueller-matrix ellipsometry. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 5, 49–57 (1988)

    Article  ADS  Google Scholar 

  25. M. Pircher, E. Götzinger, R. Leitgeb, H. Sattmann, O. Findl, C.K. Hitzenberger, Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT. Opt. Express 12, 5940–5951 (2004)

    Article  ADS  Google Scholar 

  26. S. Michels, M. Pircher, W. Geitzenauer, C. Simader, E. Gotzinger, O. Findl, U. Schmidt-Erfurth, C.K. Hitzenberger, Value of polarisation-sensitive optical coherence tomography in diseases affecting the retinal pigment epithelium. Br. J. Ophthalmol. 92, 204–209 (2008)

    Article  Google Scholar 

  27. M. Pircher, E. Götzinger, O. Findl, S. Michels, W. Geitzenauer, C. Leydolt, U. Schmidt-Erfurth, C.K. Hitzenberger, Human macula investigated in vivo with polarization-sensitive optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 47, 5487–5494 (2006)

    Article  Google Scholar 

  28. E. Götzinger, M. Pircher, W. Geitzenauer, C. Ahlers, B. Baumann, S. Michels, U. Schmidt-Erfurth, C.K. Hitzenberger, Retinal pigment epithelium segmentation by polarization sensitive optical coherence tomography. Opt. Express 16, 16410–16422 (2008)

    Article  ADS  Google Scholar 

  29. M. Pircher, E. Goetzinger, R. Leitgeb, C.K. Hitzenberger, Transversal phase resolved polarization sensitive optical coherence tomography. Phys. Med. Biol. 49, 1257–1263 (2004)

    Article  Google Scholar 

  30. E. Götzinger, M. Pircher, B. Baumann, C. Ahlers, W. Geitzenauer, U. Schmidt-Erfurth, C.K. Hitzenberger, Three-dimensional polarization sensitive OCT imaging and interactive display of the human retina. Opt. Express 17, 4151–4165 (2009)

    Article  ADS  Google Scholar 

  31. B. Baumann, E. Götzinger, M. Pircher, H. Sattman, C. Schutze, F. Schlanitz, C. Ahlers, U. Schmidt-Erfurth, C.K. Hitzenberger, Segmentation and quantification of retinal lesions in age-related macular degeneration using polarization-sensitive optical coherence tomography. J. Biomed. Opt. 15, 061704 (2010)

    Article  ADS  Google Scholar 

  32. J.F. de Boer, T.E. Milner, Review of polarization sensitive optical coherence tomography and Stokes vector determination. J. Biomed. Opt. 7, 359–371 (2002)

    Article  Google Scholar 

  33. M. Pircher, C.K. Hitzenberger, U. Schmidt-Erfurt, Polarization sensitive optical coherence tomography in the human eye. Prog. Retin. Eye Res. 30, 431–451 (2011)

    Article  Google Scholar 

  34. R.C. Jones, A new calculus for the treatment of optical systems. I. Description and discussion of the calculus. J. Opt. Soc. Am. 31, 488–493 (1941)

    Article  ADS  Google Scholar 

  35. H. Mueller, Memorandum on the polarization optics of the photoelastic shutter, (Report No. 2 of the OSRD project OEMsr-576, 1943)

    Google Scholar 

  36. G. Yao, L.V. Wang, Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography. Opt. Lett. 24, 537–539 (1999)

    Article  ADS  Google Scholar 

  37. S.L. Jiao, G. Yao, L.H.V. Wang, Depth-resolved two-dimensional Stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography. Appl. Optics 39, 6318–6324 (2000)

    Article  ADS  Google Scholar 

  38. R.C. Haskell, F.D. Carlson, P.S. Blank, Form birefringence of muscle. Biophys. J. 56, 401–413 (1989)

    Article  Google Scholar 

  39. M.I. Mishchenko, J.W. Hovenier, Depolarization of light backscattered by randomly oriented nonspherical particles. Opt. Lett. 20, 1356–1358 (1995)

    Article  ADS  Google Scholar 

  40. J.M. Schmitt, S.H. Xiang, Cross-polarized backscatter in optical coherence tomography of biological tissue. Opt. Lett. 23, 1060–1062 (1998)

    Article  ADS  Google Scholar 

  41. C.K. Hitzenberger, E. Götzinger, M. Sticker, M. Pircher, A.F. Fercher, Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. Opt. Express 9, 780–790 (2001)

    Article  ADS  Google Scholar 

  42. A.F. Fercher, C.K. Hitzenberger, Optical coherence tomography. Prog. Opt. 44, 215–302 (2002)

    Article  Google Scholar 

  43. A. Gerrard, J.M. Burch, Introduction to Matrix Methods in Optics (Wiley, London, 1975)

    Google Scholar 

  44. K. Schoenenberger, B.W. Colston, D.J. Maitland, L.B. Da Silva, M.J. Everett, Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography. Appl. Optics 37, 6026–6036 (1998)

    Article  ADS  Google Scholar 

  45. E. Gotzinger, B. Baumann, M. Pircher, C.K. Hitzenberger, Polarization maintaining fiber based ultra-high resolution spectral domain polarization sensitive optical coherence tomography. Opt. Express 17, 22704–22717 (2009)

    Article  ADS  Google Scholar 

  46. S.G. Adie, T.R. Hillman, D.D. Sampson, Detection of multiple scattering in optical coherence tomography using the spatial distribution of Stokes vectors. Opt. Express 15, 18033–18049 (2007)

    Article  ADS  Google Scholar 

  47. E. Götzinger, M. Pircher, C.K. Hitzenberger, High speed spectral domain polarization sensitive optical coherence tomography of the human retina. Opt. Express 13, 10217–10229 (2005)

    Article  Google Scholar 

  48. A. Unterhuber, B. Povazay, B. Hermann, H. Sattmann, A. Chavez-Pirson, W. Drexler, In vivo retinal optical coherence tomography at 1040 nm-enhanced penetration into the choroid. Opt. Express 13, 3252–3258 (2005)

    Article  ADS  Google Scholar 

  49. Y. Yasuno, Y.J. Hong, S. Makita, M. Yamanari, M. Akiba, M. Miura, T. Yatagai, In vivo high-contrast imaging of deep posterior eye by 1-mu m swept source optical coherence tomography and scattering optical coherence angiography. Opt. Express 15, 6121–6139 (2007)

    Article  ADS  Google Scholar 

  50. E.C.W. Lee, J.F. de Boer, M. Mujat, H. Lim, S.H. Yun, In vivo optical frequency domain imaging of human retina and choroid. Opt. Express 14, 4403–4411 (2006)

    Article  ADS  Google Scholar 

  51. P. Puvanathasan, P. Forbes, Z. Ren, D. Malchow, S. Boyd, K. Bizheva, High-speed, high-resolution Fourier-domain optical coherence tomography system for retinal imaging in the 1060 nm wavelength region. Opt. Lett. 33, 2479–2481 (2008)

    Google Scholar 

  52. T. Torzicky, M. Pircher, S. Zotter, M. Bonesi, E. Gotzinger, C.K. Hitzenberger, High-speed retinal imaging with polarization-sensitive OCT at 1040 nm. Optom. Vis. Sci. 89, 585–592 (2012)

    Article  Google Scholar 

  53. M. Yamanari, Y. Lim, S. Makita, Y. Yasuno, Visualization of phase retardation of deep posterior eye by polarization-sensitive swept-source optical coherence tomography with 1-mu m probe. Opt. Express 17, 12385–12396 (2009)

    Article  ADS  Google Scholar 

  54. B.H. Park, C. Saxer, S.M. Srinivas, J.S. Nelson, J.F. de Boer, In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography. J. Biomed. Opt. 6, 474–479 (2001)

    Article  ADS  Google Scholar 

  55. D.P. Dave, T. Akkin, T.E. Milner, Polarization-maintaining fiber-based optical low-coherence reflectometer for characterization and ranging of birefringence. Opt. Lett. 28, 1775–1777 (2003)

    Article  ADS  Google Scholar 

  56. M.K. Al-Qaisi, T. Akkin, Polarization-sensitive optical coherence tomography based on polarization-maintaining fibers and frequency multiplexing. Opt. Express 16, 13032–13041 (2008)

    Article  ADS  Google Scholar 

  57. S. Zotter, M. Pircher, T. Torzicky, B. Baumann, H. Yoshida, F. Hirose, P. Roberts, M. Ritter, C. Schutze, E. Gotzinger, W. Trasischker, C. Vass, U. Schmidt-Erfurth, C.K. Hitzenberger, Large-field high-speed polarization sensitive spectral domain OCT and its applications in ophthalmology. Biomed. Opt. Express 3, 2720–2732 (2012)

    Article  Google Scholar 

  58. M. Pircher, E. Götzinger, B. Baumann, C.K. Hitzenberger, Corneal birefringence compensation for polarization sensitive optical coherence tomography of the human retina. J. Biomed. Opt. 12, 041210 (2007)

    Article  ADS  Google Scholar 

  59. L. Duan, M. Yamanari, Y. Yasuno, Automated phase retardation oriented segmentation of chorio-scleral interface by polarization sensitive optical coherence tomography. Opt. Express 20, 3353–3366 (2012)

    Article  ADS  Google Scholar 

  60. T. Torzicky, M. Pircher, S. Zotter, M. Bonesi, E. Gotzinger, C.K. Hitzenberger, Automated measurement of choroidal thickness in the human eye by polarization sensitive optical coherence tomography. Opt. Express 20, 7564–7574 (2012)

    Article  ADS  Google Scholar 

  61. R.D. Jager, W.F. Mieler, J.W. Miller, Medical progress: age-related macular degeneration. N. Engl. J. Med. 358, 2606–2617 (2008)

    Article  Google Scholar 

  62. M. Rudolf, M.E. Clark, M.F. Chimento, C.M. Li, N.E. Medeiros, C.A. Curcio, Prevalence and morphology of druse types in the macula and periphery of eyes with age-related maculopathy. Invest. Ophthalmol. Vis. Sci. 49, 1200–1209 (2008)

    Article  Google Scholar 

  63. C. Ahlers, E. Gotzinger, M. Pircher, I. Golbaz, F. Prager, C. Schutze, B. Baumann, C.K. Hitzenberger, U. Schmidt-Erfurth, Imaging of the retinal pigment epithelium in age-related macular degeneration using polarization-sensitive optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 51, 2149–2157 (2010)

    Article  Google Scholar 

  64. F.G. Schlanitz, B. Baumann, T. Spalek, C. Schutze, C. Ahlers, M. Pircher, E. Gotzinger, C.K. Hitzenberger, U. Schmidt-Erfurth, Performance of automated Drusen detection by polarization-sensitive optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 52, 4571–4579 (2011)

    Article  Google Scholar 

  65. R. Allikmets, N.F. Shroyer, N. Singh, J.M. Seddon, R.A. Lewis, P.S. Bernstein, A. Peiffer, N.A. Zabriskie, Y.X. Li, A. Hutchinson, M. Dean, J.R. Lupski, M. Leppert, Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science 277, 1805–1807 (1997)

    Article  Google Scholar 

  66. C. Schutze, C. Ahlers, M. Pircher, B. Baumann, E. Gotzinger, F. Prager, G. Matt, S. Sacu, C.K. Hitzenberger, U. Schmidt-Erfurth, Morphologic characteristics of idiopathic juxtafoveal telangiectasia using spectral-domain and polarization-sensitive optical coherence tomography. Retina 32, 256–264 (2012)

    Article  Google Scholar 

  67. J. Lammer, M. Bolz, B. Baumann, E. Götzinger, M. Pircher, C. Hitzenberger, U. Schmidt-Erfurth, Automated detection and quantification of hard exudates in diabetic macular edema using polarization sensitive optical coherence tomography, ARVO abstract 4660/D935 (2010)

    Google Scholar 

  68. B. Baumann, S.O. Baumann, T. Konegger, M. Pircher, E. Gotzinger, F. Schlanitz, C. Schutze, H. Sattmann, M. Litschauer, U. Schmidt-Erfurth, C.K. Hitzenberger, Polarization sensitive optical coherence tomography of melanin provides intrinsic contrast based on depolarization. Biomed. Opt. Express 3, 1670–1683 (2012)

    Article  Google Scholar 

  69. B. Baumann, E. Gotzinger, M. Pircher, C.K. Hitzenberger, Measurements of depolarization distribution in the healthy human macula by polarization sensitive OCT. J. Biophotonics 2, 426–434 (2009)

    Article  Google Scholar 

  70. H.A. Quigley, E.M. Addicks, W.R. Green, Optic-nerve damage in human glaucoma. 3. Quantitative correlation of nerve-fiber loss and visual-field defect in glaucoma, ischemic neuropathy, papilledema, and toxic neuropathy. Arch. Ophthalmol. 100, 135–146 (1982)

    Article  Google Scholar 

  71. H.A. Quigley, Number of people with glaucoma worldwide. Br. J. Ophthalmol. 80, 389–393 (1996)

    Article  Google Scholar 

  72. A.W. Dreher, K. Reiter, R.N. Weinreb, Spatially resolved birefringence of the retinal nerve-fiber layer assessed with a retinal laser ellipsometer. Appl. Optics 31, 3730–3735 (1992)

    Article  ADS  Google Scholar 

  73. E. Götzinger, M. Pircher, B. Baumann, C. Hirn, C. Vass, C.K. Hitzenberger, Analysis of the origin of atypical scanning laser polarimetry patterns by polarization sensitive optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 49, 5366–5372 (2008)

    Article  Google Scholar 

  74. H. Bagga, D.S. Greenfield, W.J. Feuer, Quantitative assessment of atypical birefringence images using scanning laser polarimetry with variable corneal compensation. Am. J. Ophthalmol. 139, 437–446 (2005)

    Article  Google Scholar 

  75. C. Bowd, F.A. Medeiros, R.N. Weinreb, L.M. Zangwill, The effect of atypical birefringence patterns on glaucoma detection using scanning laser polarimetry with variable corneal compensation. Invest. Ophthalmol. Vis. Sci. 48, 223–227 (2007)

    Article  Google Scholar 

  76. T.A. Mai, N.J. Reus, H.G. Lemij, Structure-function relationship is stronger with enhanced corneal compensation than with variable corneal compensation in scanning laser polarimetry. Invest. Ophthalmol. Vis. Sci. 48, 1651–1658 (2007)

    Article  Google Scholar 

  77. M. Sehi, S. Ume, D.S. Greenfield, A.I.G.S. Grp, Scanning laser polarimetry with enhanced corneal compensation and optical coherence tomography in normal and glaucomatous eyes. Invest. Ophthalmol. Vis. Sci. 48, 2099–2104 (2007)

    Article  Google Scholar 

  78. S. Zotter, M. Pircher, E. Götzinger, T. Torzicky, H. Yoshida, F. Hirose, S. Holzer, J. Kroisamer, C. Vass, U. Schmidt-Erfurt, C.K. Hitzenberger, Measuring retinal nerve fiber layer birefringence, retardation, and thickness using wide-field, high-speed polarization sensitive spectral domain OCT. Invest. Ophthalmol. Vis. Sci. 54, 72–84 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

We thank B. Baumann, M. Bonesi, E. Götzinger, T. Torzicky, and S. Zotter, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, and C. Ahlers, M. Bolz, J. Lammer, S. Michels, M. Ritter, P. Roberts, F. Schlanitz, C. Schütze, C. Vass, and U. Schmidt-Erfurth, Department of Ophthalmology, Medical University of Vienna, for cooperation. Part of this work was financially supported by the Austrian Science Fund (grants P16776 and P19624), by the European Commission (project FUN OCT, FP7 HEALTH, contract no. 201880), and by Canon Inc., Tokyo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph K. Hitzenberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Hitzenberger, C.K., Pircher, M. (2015). MUW Approach of PS OCT. In: Drexler, W., Fujimoto, J. (eds) Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-06419-2_35

Download citation

Publish with us

Policies and ethics