Advertisement

Polarization Sensitive Optical Coherence Tomography

  • B. Hyle ParkEmail author
  • Johannes F. de Boer

Abstract

Optical coherence tomography (OCT) is an interferometric technique capable of noninvasive high-resolution cross-sectional imaging by measuring the intensity of light reflected from within tissue [1]. This results in a noncontact imaging modality that provides images similar in scale and geometry to histology. Just as different stains can be used to enhance the contrast in histology, various extensions of OCT allow for visualization of features not readily apparent in traditional OCT. For example, optical Doppler tomography [2] can enable depth-resolved imaging of flow by observing differences in phase between successive depth scans [3–5]. This chapter will focus on polarization-sensitive OCT (PS-OCT), which utilizes depth-dependent changes in the polarization state of detected light to determine the light-polarization changing properties of a sample [6–11]. These properties, including birefringence, dichroism, and optic axis orientation, can be determined directly by studying the depth evolution of Stokes parameters [7–10, 12–16] or indirectly by using the changing reflected polarization states to first determine Jones or Mueller matrices [11, 17–21]. PS-OCT has been used in a wide variety of applications, including correlating burn depth with a decrease in birefringence [14], measuring the birefringence of the retinal nerve fiber layer [22, 23], and monitoring the onset and progression of caries lesions [24]. In this chapter, a discussion of polarization theory and its application to PS-OCTwill be followed by clinical uses of the technology and will conclude with mentionof more recent work and future directions of PS-OCT.

In this chapter, a discussion of polarization theory and its application to PS-OCT will be followed by clinical uses of the technology and will conclude with mention of more recent work and future directions of PS-OCT.

Keywords

Polarization sensitive OCT PS-OCT Jones vector Mueller matrix Stokes parameter Poincaré sphere 

Notes

Acknowledgements

This research was supported in part by funding from the National Institutes of Health (1R24 EY12877, R01 EY014975, and RR19768, K99/R00 EB007241), the Department of Defense (F4-9820-01-1-0014), the Center for Integration of Medicine and Innovative Technology, and a gift from Dr. and Mrs. J.S. Chen to the Optical Diagnostics Program at the Wellman Center for Photomedicine. The authors would like to thank a number of graduate students and postdoctoral research fellows that have contributed to the results presented in this chapter: Mark Pierce, PhD, Barry Cense, PhD, and Mircea Mujat, PhD. We would also like to acknowledge the contributions of Dr. Teresa Chen, MD, of the Massachusetts Ear and Eye Infirmary.

References

  1. 1.
    D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography. Science 254(5035), 1178–1181 (1991)ADSCrossRefGoogle Scholar
  2. 2.
    X.J. Wang, T.E. Milner, J.S. Nelson, Characterization of fluid-flow velocity by optical Doppler tomography. Opt. Lett. 20(11), 1337–1339 (1995)ADSCrossRefGoogle Scholar
  3. 3.
    Y.H. Zhao, Z.P. Chen, C. Saxer, S.H. Xiang, J.F. de Boer, J.S. Nelson, Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt. Lett. 25(2), 114–116 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    Y.H. Zhao, Z.P. Chen, C. Saxer, Q.M. Shen, S.H. Xiang, J.F. de Boer, J.S. Nelson, Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow. Opt. Lett. 25(18), 1358–1360 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    V. Westphal, S. Yazdanfar, A.M. Rollins, J.A. Izatt, Real-time, high velocity-resolution color Doppler optical coherence tomography. Opt. Lett. 27(1), 34–36 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    M.R. Hee, D. Huang, E.A. Swanson, J.G. Fujimoto, Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. J. Opt. Soc. Am. B Opt. Phys. 9(6), 903–908 (1992)ADSCrossRefGoogle Scholar
  7. 7.
    J.F. de Boer, T.E. Milner, M.J.C. van Gemert, J.S. Nelson, Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt. Lett. 22(12), 934–936 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    J.F. de Boer, S.M. Srinivas, A. Malekafzali, Z.P. Chen, J.S. Nelson, Imaging thermally damaged tissue by polarization sensitive optical coherence tomography. Opt. Express 3(6), 212–218 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    M.J. Everett, K. Schoenenberger, B.W. Colston, L.B. Da Silva, Birefringence characterization of biological tissue by use of optical coherence tomography. Opt. Lett. 23(3), 228–230 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    M.G. Ducros, J.F. de Boer, H.E. Huang, L.C. Chao, Z.P. Chen, J.S. Nelson, T.E. Milner, H.G. Rylander, Polarization sensitive optical coherence tomography of the rabbit eye. IEEE J. Sel. Top. Quantum Electron. 5(4), 1159–1167 (1999)CrossRefGoogle Scholar
  11. 11.
    G. Yao, L.V. Wang, Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography. Opt. Lett. 24(8), 537–539 (1999)MathSciNetADSCrossRefGoogle Scholar
  12. 12.
    C.K. Hitzenberger, E. Gotzinger, M. Sticker, M. Pircher, A.F. Fercher, Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. Opt. Express 9(13), 780–790 (2001)ADSCrossRefGoogle Scholar
  13. 13.
    C.E. Saxer, J.F. de Boer, B.H. Park, Y.H. Zhao, Z.P. Chen, J.S. Nelson, High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin. Opt. Lett. 25(18), 1355–1357 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    B.H. Park, C. Saxer, S.M. Srinivas, J.S. Nelson, J.F. de Boer, In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography. J. Biomed. Opt. 6(4), 474–479 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    M.C. Pierce, B.H. Park, B. Cense, J.F. de Boer, Simultaneous intensity, birefringence, and flow measurements with high-speed fiber-based optical coherence tomography. Opt. Lett. 27(17), 1534–1536 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    B.H. Park, M.C. Pierce, B. Cense, S.H. Yun, M. Mujat, G.J. Tearney, B.E. Bouma, J.F. de Boer, Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 mu m. Opt. Express 13(11), 3931–3944 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    S.L. Jiao, G. Yao, L.H.V. Wang, Depth-resolved two-dimensional stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography. Appl. Opt. 39(34), 6318–6324 (2000)ADSCrossRefGoogle Scholar
  18. 18.
    S.L. Jiao, L.H.V. Wang, Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography. J. Biomed. Opt. 7(3), 350–358 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    S.L. Jiao, L.H.V. Wang, Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography. Opt. Lett. 27(2), 101–103 (2002)ADSCrossRefGoogle Scholar
  20. 20.
    S.L. Jiao, W.R. Yu, G. Stoica, L.H.V. Wang, Optical-fiber-based Mueller optical coherence tomography. Opt. Lett. 28(14), 1206–1208 (2003)ADSCrossRefGoogle Scholar
  21. 21.
    B.H. Park, M.C. Pierce, B. Cense, J.F. de Boer, Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components. Opt. Lett. 29(21), 2512–2514 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    B. Cense, T.C. Chen, B.H. Park, M.C. Pierce, J.F. de Boer, In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography. Opt. Lett. 27(18), 1610–1612 (2002)ADSCrossRefGoogle Scholar
  23. 23.
    B. Cense, T.C. Chen, B.H. Park, M.C. Pierce, J.F. de Boer, Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004)CrossRefGoogle Scholar
  24. 24.
    D. Fried, J. Xie, S. Shafi, J.D.B. Featherstone, T.M. Breunig, C. Le, Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography. J. Biomed. Opt. 7(4), 618–627 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)Google Scholar
  26. 26.
    R.A. Chipman, Polarization analysis of optical systems. Opt. Eng. 28, 90–99 (1989)ADSGoogle Scholar
  27. 27.
    S.Y. Lu, R.A. Chipman, Interpretation of Mueller matrices based on polar decomposition. J. Opt. Soc. Am. A 13, 1106–1113 (1996)ADSCrossRefGoogle Scholar
  28. 28.
    M. Todorovic, S.L. Jiao, L.V. Wang, Determination of local polarization properties of biological samples in the presence of diattenuation by use of Mueller optical coherence tomography. Opt. Lett. 29(20), 2402–2404 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    N.J. Kemp, H.N. Zaatari, J. Park, H.G. Rylander, T.E. Milner, Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT). Opt. Express 13(12), 4611–4628 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    R.C. Jones, A new calculus for the treatment of optical systems I. Description and discussion of the calculus. J. Opt. Soc. Am. A 31(7), 488–493 (1941)ADSCrossRefGoogle Scholar
  31. 31.
    J.J. Gil, E. Bernabeu, Obtainment of the polarizing and retardation parameters of a non-depolarizing optical system from the polar decomposition of its Mueller matrix. Optik 76(2), 67–71 (1987)Google Scholar
  32. 32.
    S.L. Jiao, W.R. Yu, G. Stoica, L.H.V. Wang, Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging. Appl. Opt. 42(25), 5191–5197 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    W.A. Shurcliff, S.S. Ballard, Polarized Light (Van Nostrand, New York, 1964)Google Scholar
  34. 34.
    J.F. de Boer, T.E. Milner, Review of polarization sensitive optical coherence tomography and Stokes vector determination. J. Biomed. Opt. 7(3), 359–371 (2002)CrossRefGoogle Scholar
  35. 35.
    B.H. Park, Fiber-based polarization-sensitive optical coherence tomography, in Physics and Astronomy (University of California, Irvine, 1995)Google Scholar
  36. 36.
    J. Park, N.J. Kemp, H.N. Zaatari, H.G. Rylander, T.E. Milner, Differential geometry of normalized stokes vector trajectories in anisotropic media. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23(3), 679–690 (2006)MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    B.H. Park, M.C. Pierce, B. Cense, J.F. de Boer, Real-time multi-functional optical coherence tomography. Opt. Express 11(7), 782–793 (2003)ADSCrossRefGoogle Scholar
  38. 38.
    S.L. Jiao, M. Todorovic, G. Stoica, L.H.V. Wang, Fiber-based polarization-sensitive Mueller matrix optical coherence tomography with continuous source polarization modulation. Appl. Opt. 44(26), 5463–5467 (2005)ADSCrossRefGoogle Scholar
  39. 39.
    M. Yamanari, S. Makita, V.D. Madjarova, T. Yatagai, Y. Yasuno, Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method. Opt. Express 14(14), 6502–6515 (2006)ADSCrossRefGoogle Scholar
  40. 40.
    M. Yamanari, S. Makita, Y. Yasuno, Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation. Opt. Express 16(8), 5892–5906 (2008)ADSCrossRefGoogle Scholar
  41. 41.
    W.Y. Oh, S.H. Yun, B.J. Vakoc, M. Shishkov, A.E. Desjardins, B.H. Park, J.F. de Boer, G.J. Tearney, E. Bouma, High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing. Opt. Express 16(2), 1096–1103 (2008)ADSCrossRefGoogle Scholar
  42. 42.
    K.H. Kim, B.H. Park, Y. Tu, T. Hasan, B. Lee, J. Li, J.F. de Boer, Polarization-sensitive optical frequency domain imaging based on unpolarized light. Optics Express 19(2), 552–561 (2011)Google Scholar
  43. 43.
    K. Schoenenberger, B.W. Colston, D.J. Maitland, L.B. Da Silva, M.J. Everett, Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography. Appl. Opt. 37(25), 6026–6036 (1998)ADSCrossRefGoogle Scholar
  44. 44.
    G.J. van Blokland, Ellipsometry of the human retina in vivo: preservation of polarization. J. Opt. Soc. Am. A 2, 72–75 (1985)ADSCrossRefGoogle Scholar
  45. 45.
    H.B.K. Brink, G.J. van Blokland, Birefringence of the human foveal area assessed in vivo with Mueller-matrix ellipsometry. J. Opt. Soc. Am. A 5, 49–57 (1988)ADSCrossRefGoogle Scholar
  46. 46.
    W.K. Tung, Group Theory in Physics (World Scientific, Philadelphia, 1985)CrossRefGoogle Scholar
  47. 47.
    B.H. Park, M.C. Pierce, J.F. de Boer, Comment on “optical-fiber-based Mueller optical coherence tomography”. Opt. Lett. 29(24), 2873–2874 (2004)ADSCrossRefGoogle Scholar
  48. 48.
    B.H. Park, M.C. Pierce, B. Cense, J.F. de Boer, Optic axis determination accuracy for fiber-based polarization-sensitive optical coherence tomography. Opt. Lett. 30(19), 2587–2589 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    M.G. Ducros, J.D. Marsack, H.G. Rylander, S.L. Thomsen, T.E. Milner, Primate retina imaging with polarization-sensitive optical coherence tomography. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18(12), 2945–2956 (2001)ADSCrossRefGoogle Scholar
  50. 50.
    B. Cense, H.C. Chen, B.H. Park, M.C. Pierce, J.F. de Boer, In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography. J. Biomed. Opt. 9(1), 121–125 (2004)ADSCrossRefGoogle Scholar
  51. 51.
    M. Pircher, E. Gotzinger, R. Leitgeb, H. Sattmann, O. Findl, C.K. Hitzenberger, Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT. Opt. Express 12(24), 5940–5951 (2004)ADSCrossRefGoogle Scholar
  52. 52.
    E. Gotzinger, M. Pircher, C.K. Hitzenberger, High speed spectral domain polarization sensitive optical coherence tomography of the human retina. Opt. Express 13(25), 10217–10229 (2005)ADSCrossRefGoogle Scholar
  53. 53.
    O.K. Naoun, V.L. Dorr, P. Alle, J.C. Sablon, A.M. Benoit, Exploration of the retinal nerve fiber layer thickness by measurement of the linear dichroism. Appl. Opt. 44(33), 7074–7082 (2005)ADSCrossRefGoogle Scholar
  54. 54.
    H.G. Rylander, N.J. Kemp, J.S. Park, H.N. Zaatari, T.E. Milner, Birefringence of the primate retinal nerve fiber layer. Exp. Eye Res. 81(1), 81–89 (2005)CrossRefGoogle Scholar
  55. 55.
    L.M. Zangwill, C. Bowd, Retinal nerve fiber layer analysis in the diagnosis of glaucoma. Curr. Opin. Ophthalmol. 17(2), 120–131 (2006)Google Scholar
  56. 56.
    B.W. Colston, U.S. Sathyam, L.B. DaSilva, M.J. Everett, P. Stroeve, L.L. Otis, O.C.T. Dental, Opt. Express 3(6), 230–238 (1998)ADSCrossRefGoogle Scholar
  57. 57.
    X.J. Wang, T.E. Milner, J.F. de Boer, Y. Zhang, D.H. Pashley, J.S. Nelson, Characterization of dentin and enamel by use of optical coherence tomography. Appl. Opt. 38(10), 2092–2096 (1999)ADSCrossRefGoogle Scholar
  58. 58.
    A. Baumgartner, S. Dichtl, C.K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, Z.F. Fercher, W. Sperr, Polarization-sensitive optical coherence tomography of dental structures. Caries Res. 34(1), 59–69 (2000)CrossRefGoogle Scholar
  59. 59.
    B.T. Amaechi, S.M. Higham, A.G. Podoleanu, J.A. Rogers, D.A. Jackson, Use of optical coherence tomography for assessment of dental caries: quantitative procedure. J. Oral Rehab. 28, 1092–1093 (2001)CrossRefGoogle Scholar
  60. 60.
    D. Fried, J. Xie, S. Sahar, J.D.B. Featherstone, T.M. Breunig, C. Le, Imaging of early caries lesions and lesion progression using an all fiber 1310-nm polarization sensitive OCT system. J. Dent. Res. 81, A386–A386 (2002)Google Scholar
  61. 61.
    B.T. Amaechi, A.G. Podoleanu, S.M. Higham, D.A. Jackson, Correlation of quantitative light-induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries. J. Biomed. Opt. 8, 1297–1304 (2003)CrossRefGoogle Scholar
  62. 62.
    R.S. Jones, M. Staninec, D. Fried, Imaging artificial caries under composite sealants and restorations. J. Biomed. Opt. 9(6), 1297–1304 (2004)ADSCrossRefGoogle Scholar
  63. 63.
    P. Ngaotheppitak, C.L. Darling, D. Fried, Measurement of the severity of natural smooth surface (interproximal) caries lesions with polarization sensitive optical coherence tomography. Lasers Surg. Med. 37(1), 78–88 (2005)CrossRefGoogle Scholar
  64. 64.
    J.M. Herrmann, C. Pitris, B.E. Bouma, S.A. Boppart, C.A. Jesser, D.L. Stamper, J.G. Fujimoto, M.E. Brezinski, High resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography. J. Rheumatol. 26(3), 627–635 (1999)Google Scholar
  65. 65.
    W. Drexler, D. Stamper, C. Jesser, X.D. Li, C. Pitris, K. Saunders, S. Martin, M.B. Lodge, J.G. Fujimoto, M.E. Brezinski, Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis. J. Rheumatol. 28(6), 1311–1318 (2001)Google Scholar
  66. 66.
    Y.T. Pan, Z.G. Li, T.Q. Xie, C.R. Chu, Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage. J. Biomed. Opt. 8(4), 648–654 (2003)ADSCrossRefGoogle Scholar
  67. 67.
    C.W. Han, C.R. Chu, N. Adachi, A. Usas, F.H. Fu, J. Huard, Y. Pan, Analysis of rabbit articular cartilage repair after chondroctye implantation using optical coherence tomography. Osteoarthritis Cartilage 11, 111–121 (2003)CrossRefGoogle Scholar
  68. 68.
    C.R. Chu, D. Lin, J.L. Geisler, C.T. Chu, F.H. Fu, Y.T. Pan, Arthroscopic microscopy of articular cartilage using optical coherence tomography. Am. J. Sports Med. 32, 699–709 (2004)CrossRefGoogle Scholar
  69. 69.
    X.D. Li, S. Martin, C. Pitris, R. Ghanta, D.L. Stamper, M. Harman, J.G. Fujimoto, M.E. Brezinski, High-resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery. Arthritis Res. Ther. 7(2), R318–R323 (2005)CrossRefGoogle Scholar
  70. 70.
    N.A. Patel, J. Zoeller, D.L. Stamper, J.G. Fujimoto, M.E. Brezinski, Monitoring osteoarthritis in the rat model using optical coherence tomography. IEEE Trans. Med. Imag. 24(2), 155–159 (2005)CrossRefGoogle Scholar
  71. 71.
    J.I. Youn, G. Vargas, B.J.F. Wong, T.E. Milner, Depth-resolved phase retardation measurements for laser-assisted non-ablative cartilage reshaping. Phys. Med. Biol. 50(9), 1937–1950 (2005)CrossRefGoogle Scholar
  72. 72.
    M.C. Pierce, J. Strasswimmer, B.H. Park, B. Cense, J.F. de Boer, Advances in optical coherence tomography imaging for dermatology. J. Investig. Dermatol. 123(3), 458–463 (2004)CrossRefGoogle Scholar
  73. 73.
    P.A. Brigham, E. McLoughlin, Burn incidence and medical care use in the United States: estimates, trends, and data sources. J. Burn Care Rehabil. 17, 95 (1997)CrossRefGoogle Scholar
  74. 74.
    D.J. Maitland, J.T. Walsh, Quantitative measurements of linear birefringence during heating of native collagen. Lasers Surg. Med. 20, 310 (1997)CrossRefGoogle Scholar
  75. 75.
    S.M. Srinivas, J.F. de Boer, H. Park, K. Keikhanzadeh, H.E.L. Huang, J. Zhang, W.Q. Jung, Z.P. Chen, J.S. Nelson, Determination of burn depth by polarization-sensitive optical coherence tomography. J. Biomed. Opt. 9(1), 207–212 (2004)ADSCrossRefGoogle Scholar
  76. 76.
    Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, T. Yatagai, Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography. Opt. Lett. 27(20), 1803–1805 (2002)ADSCrossRefGoogle Scholar
  77. 77.
    M.C. Pierce, J. Strasswimmer, B.H. Park, B. Cense, J.F. de Boer, Birefringence measurements in human skin using polarization-sensitive optical coherence tomography. J. Biomed. Opt. 9(2), 287–291 (2004)ADSCrossRefGoogle Scholar
  78. 78.
    M. Pircher, E. Goetzinger, R. Leitgeb, C.K. Hitzenberger, Three dimensional polarization sensitive OCT of human skin in vivo. Opt. Express 12(14), 3236–3244 (2004)ADSCrossRefGoogle Scholar
  79. 79.
    M.C. Pierce, R.L. Sheridan, B.H. Park, B. Cense, J.F. de Boer, Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography. Burns 30(6), 511–517 (2004)CrossRefGoogle Scholar
  80. 80.
    J. Strasswimmer, M.C. Pierce, B.H. Park, V. Neel, J.F. de Boer, Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma. J. Biomed. Opt. 9(2), 292–298 (2004)ADSCrossRefGoogle Scholar
  81. 81.
    T. Kuwahara, J. Strasswimmer, J. de Boer, R. Anderson, Noninvasive measurements of the photodamaged human skin in vivo by polarization-sensitive optical coherence tomography. J. Am. Acad. Dermatol. 52(3), P163–P163 (2005)Google Scholar
  82. 82.
    M. Mujat, B.H. Park, B. Cense, T.C. Chen, J.F. de Boer, Auto-calibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination. J. Biomed. Opt. 12(4):041205 (2007). doi: 10.1117/1.2764460Google Scholar
  83. 83.
    A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. Elzaiat, Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 117(1–2), 43–48 (1995)ADSCrossRefGoogle Scholar
  84. 84.
    G. Hausler, M.W. Lindner, “Coherence Radar” and “Spectral Radar” – new tools for dermatological diagnosis. J. Biomed. Opt. 3(1), 21–31 (1998)ADSCrossRefGoogle Scholar
  85. 85.
    M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A.F. Fercher, In vivo human retinal imaging by Fourier domain optical coherence tomography. J. Biomed. Opt. 7(3), 457–463 (2002)ADSCrossRefGoogle Scholar
  86. 86.
    S.H. Yun, G.J. Tearney, J.F. de Boer, N. Iftimia, B.E. Bouma, High-speed optical frequency-domain imaging. Opt. Express 11(22), 2953–2963 (2003)ADSCrossRefGoogle Scholar
  87. 87.
    P. Andretzky, M.W. Lindner, J.M. Hermann, A. Schultz, M. Konzog, F. Kiesewetter, G. Hausler, Optical coherence tomography by spectral radar: dynamic range estimation and in vivo measurements of skin. Proc. SPIE 3567, 78–87 (1998)ADSCrossRefGoogle Scholar
  88. 88.
    T. Mitsui, Dynamic range of optical reflectometry with spectral interferometry. Japan. J. Appl. Phys. 1-Reg. Pap. Short Notes Rev. Pap. 38(10), 6133–6137 (1999)CrossRefGoogle Scholar
  89. 89.
    R. Leitgeb, C.K. Hitzenberger, A.F. Fercher, Performance of Fourier domain vs. time domain optical coherence tomography. Opt. Express 11, 889–894 (2003)ADSCrossRefGoogle Scholar
  90. 90.
    J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, B.E. Bouma, Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28(21), 2067–2069 (2003)ADSCrossRefGoogle Scholar
  91. 91.
    M.A. Choma, M.V. Sarunic, C.H. Yang, J.A. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11, 2183–2189 (2003)ADSCrossRefGoogle Scholar
  92. 92.
    J. Zhang, W.G. Jung, J.S. Nelson, Z.P. Chen, Full range polarization-sensitive Fourier domain optical coherence tomography. Opt. Express 12(24), 6033–6039 (2004)ADSCrossRefGoogle Scholar
  93. 93.
    S.G. Guo, J. Zhang, L. Wang, J.S. Nelson, Z.P. Chen, Depth-resolved birefringence and differential optical axis orientation measurements with fiber-based polarization-sensitive optical coherence tomography. Opt. Lett. 29(17), 2025–2027 (2004)ADSCrossRefGoogle Scholar
  94. 94.
    N.J. Kemp, H.N. Zaatari, J. Park, H.G. Rylander, T.E. Milner, Depth-resolved optic axis orientation in multiple layered anisotropic tissues measured with enhanced polarization-sensitive optical coherence tomography (EPS-OCT). Opt. Express 13(12), 4507–4518 (2005)ADSCrossRefGoogle Scholar
  95. 95.
    S. Yazdanfar, C.H. Yang, M.V. Sarunic, J.A. Izatt, Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound. Opt. Express 15, 410–416 (2004)Google Scholar
  96. 96.
    N.J. Kemp, J. Park, H.N. Zaatari, H.G. Rylander, T.E. Milner, High-sensitivity determination of birefringence in turbid media with enhanced polarization-sensitive optical coherence tomography. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 22(3), 552–560 (2005)ADSCrossRefGoogle Scholar
  97. 97.
    J.M. Schmitt, Array detection for speckle reduction in optical coherence microscopy. Phys. Med. Biol. 42(7), 1427–1439 (1997)ADSCrossRefGoogle Scholar
  98. 98.
    J.M. Schmitt, S.H. Xiang, K.M. Yung, Speckle in optical coherence tomography. J. Biomed. Opt. 4(1), 95–105 (1999)ADSCrossRefGoogle Scholar
  99. 99.
    M. Bashkansky, J. Reintjes, Statistics and reduction of speckle in optical coherence tomography. Opt. Lett. 25(8), 545–547 (2000)ADSCrossRefGoogle Scholar
  100. 100.
    M.A. Sapia, D.C. Colosi, L.L. Otis, Reduction of speckle noise in OCT images. J. Dent. Res. 79, 550–550 (2000)Google Scholar
  101. 101.
    N. Iftimia, B.E. Bouma, G.J. Tearney, Speckle reduction in optical coherence tomography by “path length encoded” angular compounding. J. Biomed. Opt. 8(2), 260–263 (2003)ADSCrossRefGoogle Scholar
  102. 102.
    D.C. Adler, T.H. Ko, J.G. Fujimoto, Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter. Opt. Lett. 29(24), 2878–2880 (2004)ADSCrossRefGoogle Scholar
  103. 103.
    J.H. Kim, J.W. Oh, D.T. Miller, T.E. Milner, Speckle reduction in OCT using mode averaging. Lasers Surg. Med. 8–8 (2004)Google Scholar
  104. 104.
    B.H. Park, M.C. Pierce, B. Cense, J.F. de Boer. Speckle averaging for optical coherence tomography. SPIE Photon. West. (2004)Google Scholar
  105. 105.
    J. Kim, D.T. Miller, E. Kim, S. Oh, J. Oh, T.E. Milner, Optical coherence tomography speckle reduction by a partially spatially coherent source. J. Biomed. Opt. 10(6), 064034 (2005)ADSCrossRefGoogle Scholar
  106. 106.
    D.L. Marks, T.S. Ralston, S.A. Boppart, Speckle reduction by I-divergence regularization in optical coherence tomography. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 22(11), 2366–2371 (2005)ADSCrossRefGoogle Scholar
  107. 107.
    A.E. Desjardins, B.J. Vakoc, G.J. Tearney, B.E. Bouma, Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging. Opt. Express 14(11), 4736–4745 (2006)ADSCrossRefGoogle Scholar
  108. 108.
    B.H. Park, B. Cense, M.C. Pierce, J.F. de Boer, A novel technique for speckle reduction with multi-functional optical coherence tomography. SPIE Photon. West. (2006)Google Scholar
  109. 109.
    N. Ugryumova, S.V. Gangnus, S.J. Matcher, Three-dimensional optic axis determination using variable-incidence-angle polarization-optical coherence tomography. Opt. Lett. 31(15), 2305–2307 (2006)ADSCrossRefGoogle Scholar
  110. 110.
    M.C. Pierce, M. Shishkov, B.H. Park, N.A. Nassif, B.E. Bouma, G.J. Tearney, J.F. de Boer, Effects of sample arm motion in endoscopic polarization-sensitive optical coherence tomography. Opt. Express 13(15), 5739–5749 (2005)ADSCrossRefGoogle Scholar
  111. 111.
    B. Stanford, D.L. Stamper, P.R. Herz, S.D. Giattina, S.B. Adams, A.L. Robertson, T.H. Ko, M.J. Roberts, N.D. Joshi, J.G. Fujimoto, P.J. Fitzgerald, M.E. Brezinski, Polarization sensitive optical coherence tomography imaging in coronary arteries for enhanced identification of vascular lesion components. Circulation 110(17), 524–524 (2004)Google Scholar
  112. 112.
    S. Nadkarni, M. Pierce, H. Park, J. deBoer, S. Houser, J. Bressner, B. Bouma, G. Tearney, Polarization-sensitive optical coherence tomography for the analysis of collagen content in atherosclerotic plaques. Circulation 112(17), U679–U679 (2005)Google Scholar
  113. 113.
    S.K. Nadkarni, M. Pierce, H. Park, J. deBoer, S. Houser, J. Bressner, B. Bouma, G. Tearney, Analysis of collagen birefringence in atherosclerotic plaques using polarization sensitive optical coherence tomography. Am. J. Cardiol. 96(7A), 111H–111H (2005)Google Scholar
  114. 114.
    S. Shortkroff, S.D. Giattina, B.K. Courtney, P.R. Herz, D.L. Stamper, J.J. Fugimoto, M.E. Brezinski, Collagen content of coronary plaque measured by polarization sensitive optical coherence tomography (PS-OCT). J. Am. Coll. Cardiol. 47(4), 121A–121A (2006)Google Scholar
  115. 115.
    S.K. Nadkarni, M.C. Pierce, B.H. Park, J.F. de Boer, P. Whittaker, B.E. Bouma, J.E. Bressner, E. Halpern, S.L. Houser, G.J. Tearney, Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography. J. Am. Coll. Cardiol. 49(13), 1474–1481 (2007)CrossRefGoogle Scholar
  116. 116.
    J.J. Pasquesi, S.C. Schlachter, M.D. Boppart, E. Chaney, S.J. Kaufman, S.A. Boppart, In vivo detection of exercise-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography. Opt. Express 14(4), 1547–1556 (2006)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of BioengineeringUC RiversideRiversideUSA
  2. 2.Department of Physics and Astronomy, LaserLaB AmsterdamVrije Univ AmsterdamAmsterdamThe Netherlands

Personalised recommendations