Skip to main content

Polarization Sensitive Optical Coherence Tomography

  • Reference work entry
Optical Coherence Tomography

Abstract

Optical coherence tomography (OCT) is an interferometric technique capable of noninvasive high-resolution cross-sectional imaging by measuring the intensity of light reflected from within tissue [1]. This results in a noncontact imaging modality that provides images similar in scale and geometry to histology. Just as different stains can be used to enhance the contrast in histology, various extensions of OCT allow for visualization of features not readily apparent in traditional OCT. For example, optical Doppler tomography [2] can enable depth-resolved imaging of flow by observing differences in phase between successive depth scans [3–5]. This chapter will focus on polarization-sensitive OCT (PS-OCT), which utilizes depth-dependent changes in the polarization state of detected light to determine the light-polarization changing properties of a sample [6–11]. These properties, including birefringence, dichroism, and optic axis orientation, can be determined directly by studying the depth evolution of Stokes parameters [7–10, 12–16] or indirectly by using the changing reflected polarization states to first determine Jones or Mueller matrices [11, 17–21]. PS-OCT has been used in a wide variety of applications, including correlating burn depth with a decrease in birefringence [14], measuring the birefringence of the retinal nerve fiber layer [22, 23], and monitoring the onset and progression of caries lesions [24]. In this chapter, a discussion of polarization theory and its application to PS-OCTwill be followed by clinical uses of the technology and will conclude with mentionof more recent work and future directions of PS-OCT.

In this chapter, a discussion of polarization theory and its application to PS-OCT will be followed by clinical uses of the technology and will conclude with mention of more recent work and future directions of PS-OCT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography. Science 254(5035), 1178–1181 (1991)

    Article  ADS  Google Scholar 

  2. X.J. Wang, T.E. Milner, J.S. Nelson, Characterization of fluid-flow velocity by optical Doppler tomography. Opt. Lett. 20(11), 1337–1339 (1995)

    Article  ADS  Google Scholar 

  3. Y.H. Zhao, Z.P. Chen, C. Saxer, S.H. Xiang, J.F. de Boer, J.S. Nelson, Phase-resolved optical coherence tomography and optical Doppler tomography for imaging blood flow in human skin with fast scanning speed and high velocity sensitivity. Opt. Lett. 25(2), 114–116 (2000)

    Article  ADS  Google Scholar 

  4. Y.H. Zhao, Z.P. Chen, C. Saxer, Q.M. Shen, S.H. Xiang, J.F. de Boer, J.S. Nelson, Doppler standard deviation imaging for clinical monitoring of in vivo human skin blood flow. Opt. Lett. 25(18), 1358–1360 (2000)

    Article  ADS  Google Scholar 

  5. V. Westphal, S. Yazdanfar, A.M. Rollins, J.A. Izatt, Real-time, high velocity-resolution color Doppler optical coherence tomography. Opt. Lett. 27(1), 34–36 (2002)

    Article  ADS  Google Scholar 

  6. M.R. Hee, D. Huang, E.A. Swanson, J.G. Fujimoto, Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. J. Opt. Soc. Am. B Opt. Phys. 9(6), 903–908 (1992)

    Article  ADS  Google Scholar 

  7. J.F. de Boer, T.E. Milner, M.J.C. van Gemert, J.S. Nelson, Two-dimensional birefringence imaging in biological tissue by polarization-sensitive optical coherence tomography. Opt. Lett. 22(12), 934–936 (1997)

    Article  ADS  Google Scholar 

  8. J.F. de Boer, S.M. Srinivas, A. Malekafzali, Z.P. Chen, J.S. Nelson, Imaging thermally damaged tissue by polarization sensitive optical coherence tomography. Opt. Express 3(6), 212–218 (1998)

    Article  ADS  Google Scholar 

  9. M.J. Everett, K. Schoenenberger, B.W. Colston, L.B. Da Silva, Birefringence characterization of biological tissue by use of optical coherence tomography. Opt. Lett. 23(3), 228–230 (1998)

    Article  ADS  Google Scholar 

  10. M.G. Ducros, J.F. de Boer, H.E. Huang, L.C. Chao, Z.P. Chen, J.S. Nelson, T.E. Milner, H.G. Rylander, Polarization sensitive optical coherence tomography of the rabbit eye. IEEE J. Sel. Top. Quantum Electron. 5(4), 1159–1167 (1999)

    Article  Google Scholar 

  11. G. Yao, L.V. Wang, Two-dimensional depth-resolved Mueller matrix characterization of biological tissue by optical coherence tomography. Opt. Lett. 24(8), 537–539 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  12. C.K. Hitzenberger, E. Gotzinger, M. Sticker, M. Pircher, A.F. Fercher, Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. Opt. Express 9(13), 780–790 (2001)

    Article  ADS  Google Scholar 

  13. C.E. Saxer, J.F. de Boer, B.H. Park, Y.H. Zhao, Z.P. Chen, J.S. Nelson, High-speed fiber-based polarization-sensitive optical coherence tomography of in vivo human skin. Opt. Lett. 25(18), 1355–1357 (2000)

    Article  ADS  Google Scholar 

  14. B.H. Park, C. Saxer, S.M. Srinivas, J.S. Nelson, J.F. de Boer, In vivo burn depth determination by high-speed fiber-based polarization sensitive optical coherence tomography. J. Biomed. Opt. 6(4), 474–479 (2001)

    Article  ADS  Google Scholar 

  15. M.C. Pierce, B.H. Park, B. Cense, J.F. de Boer, Simultaneous intensity, birefringence, and flow measurements with high-speed fiber-based optical coherence tomography. Opt. Lett. 27(17), 1534–1536 (2002)

    Article  ADS  Google Scholar 

  16. B.H. Park, M.C. Pierce, B. Cense, S.H. Yun, M. Mujat, G.J. Tearney, B.E. Bouma, J.F. de Boer, Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 mu m. Opt. Express 13(11), 3931–3944 (2005)

    Article  ADS  Google Scholar 

  17. S.L. Jiao, G. Yao, L.H.V. Wang, Depth-resolved two-dimensional stokes vectors of backscattered light and Mueller matrices of biological tissue measured with optical coherence tomography. Appl. Opt. 39(34), 6318–6324 (2000)

    Article  ADS  Google Scholar 

  18. S.L. Jiao, L.H.V. Wang, Jones-matrix imaging of biological tissues with quadruple-channel optical coherence tomography. J. Biomed. Opt. 7(3), 350–358 (2002)

    Article  ADS  Google Scholar 

  19. S.L. Jiao, L.H.V. Wang, Two-dimensional depth-resolved Mueller matrix of biological tissue measured with double-beam polarization-sensitive optical coherence tomography. Opt. Lett. 27(2), 101–103 (2002)

    Article  ADS  Google Scholar 

  20. S.L. Jiao, W.R. Yu, G. Stoica, L.H.V. Wang, Optical-fiber-based Mueller optical coherence tomography. Opt. Lett. 28(14), 1206–1208 (2003)

    Article  ADS  Google Scholar 

  21. B.H. Park, M.C. Pierce, B. Cense, J.F. de Boer, Jones matrix analysis for a polarization-sensitive optical coherence tomography system using fiber-optic components. Opt. Lett. 29(21), 2512–2514 (2004)

    Article  ADS  Google Scholar 

  22. B. Cense, T.C. Chen, B.H. Park, M.C. Pierce, J.F. de Boer, In vivo depth-resolved birefringence measurements of the human retinal nerve fiber layer by polarization-sensitive optical coherence tomography. Opt. Lett. 27(18), 1610–1612 (2002)

    Article  ADS  Google Scholar 

  23. B. Cense, T.C. Chen, B.H. Park, M.C. Pierce, J.F. de Boer, Thickness and birefringence of healthy retinal nerve fiber layer tissue measured with polarization-sensitive optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 45(8), 2606–2612 (2004)

    Article  Google Scholar 

  24. D. Fried, J. Xie, S. Shafi, J.D.B. Featherstone, T.M. Breunig, C. Le, Imaging caries lesions and lesion progression with polarization sensitive optical coherence tomography. J. Biomed. Opt. 7(4), 618–627 (2002)

    Article  ADS  Google Scholar 

  25. C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983)

    Google Scholar 

  26. R.A. Chipman, Polarization analysis of optical systems. Opt. Eng. 28, 90–99 (1989)

    ADS  Google Scholar 

  27. S.Y. Lu, R.A. Chipman, Interpretation of Mueller matrices based on polar decomposition. J. Opt. Soc. Am. A 13, 1106–1113 (1996)

    Article  ADS  Google Scholar 

  28. M. Todorovic, S.L. Jiao, L.V. Wang, Determination of local polarization properties of biological samples in the presence of diattenuation by use of Mueller optical coherence tomography. Opt. Lett. 29(20), 2402–2404 (2004)

    Article  ADS  Google Scholar 

  29. N.J. Kemp, H.N. Zaatari, J. Park, H.G. Rylander, T.E. Milner, Form-biattenuance in fibrous tissues measured with polarization-sensitive optical coherence tomography (PS-OCT). Opt. Express 13(12), 4611–4628 (2005)

    Article  ADS  Google Scholar 

  30. R.C. Jones, A new calculus for the treatment of optical systems I. Description and discussion of the calculus. J. Opt. Soc. Am. A 31(7), 488–493 (1941)

    Article  ADS  Google Scholar 

  31. J.J. Gil, E. Bernabeu, Obtainment of the polarizing and retardation parameters of a non-depolarizing optical system from the polar decomposition of its Mueller matrix. Optik 76(2), 67–71 (1987)

    Google Scholar 

  32. S.L. Jiao, W.R. Yu, G. Stoica, L.H.V. Wang, Contrast mechanisms in polarization-sensitive Mueller-matrix optical coherence tomography and application in burn imaging. Appl. Opt. 42(25), 5191–5197 (2003)

    Article  ADS  Google Scholar 

  33. W.A. Shurcliff, S.S. Ballard, Polarized Light (Van Nostrand, New York, 1964)

    Google Scholar 

  34. J.F. de Boer, T.E. Milner, Review of polarization sensitive optical coherence tomography and Stokes vector determination. J. Biomed. Opt. 7(3), 359–371 (2002)

    Article  Google Scholar 

  35. B.H. Park, Fiber-based polarization-sensitive optical coherence tomography, in Physics and Astronomy (University of California, Irvine, 1995)

    Google Scholar 

  36. J. Park, N.J. Kemp, H.N. Zaatari, H.G. Rylander, T.E. Milner, Differential geometry of normalized stokes vector trajectories in anisotropic media. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 23(3), 679–690 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  37. B.H. Park, M.C. Pierce, B. Cense, J.F. de Boer, Real-time multi-functional optical coherence tomography. Opt. Express 11(7), 782–793 (2003)

    Article  ADS  Google Scholar 

  38. S.L. Jiao, M. Todorovic, G. Stoica, L.H.V. Wang, Fiber-based polarization-sensitive Mueller matrix optical coherence tomography with continuous source polarization modulation. Appl. Opt. 44(26), 5463–5467 (2005)

    Article  ADS  Google Scholar 

  39. M. Yamanari, S. Makita, V.D. Madjarova, T. Yatagai, Y. Yasuno, Fiber-based polarization-sensitive Fourier domain optical coherence tomography using B-scan-oriented polarization modulation method. Opt. Express 14(14), 6502–6515 (2006)

    Article  ADS  Google Scholar 

  40. M. Yamanari, S. Makita, Y. Yasuno, Polarization-sensitive swept-source optical coherence tomography with continuous source polarization modulation. Opt. Express 16(8), 5892–5906 (2008)

    Article  ADS  Google Scholar 

  41. W.Y. Oh, S.H. Yun, B.J. Vakoc, M. Shishkov, A.E. Desjardins, B.H. Park, J.F. de Boer, G.J. Tearney, E. Bouma, High-speed polarization sensitive optical frequency domain imaging with frequency multiplexing. Opt. Express 16(2), 1096–1103 (2008)

    Article  ADS  Google Scholar 

  42. K.H. Kim, B.H. Park, Y. Tu, T. Hasan, B. Lee, J. Li, J.F. de Boer, Polarization-sensitive optical frequency domain imaging based on unpolarized light. Optics Express 19(2), 552–561 (2011)

    Google Scholar 

  43. K. Schoenenberger, B.W. Colston, D.J. Maitland, L.B. Da Silva, M.J. Everett, Mapping of birefringence and thermal damage in tissue by use of polarization-sensitive optical coherence tomography. Appl. Opt. 37(25), 6026–6036 (1998)

    Article  ADS  Google Scholar 

  44. G.J. van Blokland, Ellipsometry of the human retina in vivo: preservation of polarization. J. Opt. Soc. Am. A 2, 72–75 (1985)

    Article  ADS  Google Scholar 

  45. H.B.K. Brink, G.J. van Blokland, Birefringence of the human foveal area assessed in vivo with Mueller-matrix ellipsometry. J. Opt. Soc. Am. A 5, 49–57 (1988)

    Article  ADS  Google Scholar 

  46. W.K. Tung, Group Theory in Physics (World Scientific, Philadelphia, 1985)

    Book  Google Scholar 

  47. B.H. Park, M.C. Pierce, J.F. de Boer, Comment on “optical-fiber-based Mueller optical coherence tomography”. Opt. Lett. 29(24), 2873–2874 (2004)

    Article  ADS  Google Scholar 

  48. B.H. Park, M.C. Pierce, B. Cense, J.F. de Boer, Optic axis determination accuracy for fiber-based polarization-sensitive optical coherence tomography. Opt. Lett. 30(19), 2587–2589 (2005)

    Article  ADS  Google Scholar 

  49. M.G. Ducros, J.D. Marsack, H.G. Rylander, S.L. Thomsen, T.E. Milner, Primate retina imaging with polarization-sensitive optical coherence tomography. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 18(12), 2945–2956 (2001)

    Article  ADS  Google Scholar 

  50. B. Cense, H.C. Chen, B.H. Park, M.C. Pierce, J.F. de Boer, In vivo birefringence and thickness measurements of the human retinal nerve fiber layer using polarization-sensitive optical coherence tomography. J. Biomed. Opt. 9(1), 121–125 (2004)

    Article  ADS  Google Scholar 

  51. M. Pircher, E. Gotzinger, R. Leitgeb, H. Sattmann, O. Findl, C.K. Hitzenberger, Imaging of polarization properties of human retina in vivo with phase resolved transversal PS-OCT. Opt. Express 12(24), 5940–5951 (2004)

    Article  ADS  Google Scholar 

  52. E. Gotzinger, M. Pircher, C.K. Hitzenberger, High speed spectral domain polarization sensitive optical coherence tomography of the human retina. Opt. Express 13(25), 10217–10229 (2005)

    Article  ADS  Google Scholar 

  53. O.K. Naoun, V.L. Dorr, P. Alle, J.C. Sablon, A.M. Benoit, Exploration of the retinal nerve fiber layer thickness by measurement of the linear dichroism. Appl. Opt. 44(33), 7074–7082 (2005)

    Article  ADS  Google Scholar 

  54. H.G. Rylander, N.J. Kemp, J.S. Park, H.N. Zaatari, T.E. Milner, Birefringence of the primate retinal nerve fiber layer. Exp. Eye Res. 81(1), 81–89 (2005)

    Article  Google Scholar 

  55. L.M. Zangwill, C. Bowd, Retinal nerve fiber layer analysis in the diagnosis of glaucoma. Curr. Opin. Ophthalmol. 17(2), 120–131 (2006)

    Google Scholar 

  56. B.W. Colston, U.S. Sathyam, L.B. DaSilva, M.J. Everett, P. Stroeve, L.L. Otis, O.C.T. Dental, Opt. Express 3(6), 230–238 (1998)

    Article  ADS  Google Scholar 

  57. X.J. Wang, T.E. Milner, J.F. de Boer, Y. Zhang, D.H. Pashley, J.S. Nelson, Characterization of dentin and enamel by use of optical coherence tomography. Appl. Opt. 38(10), 2092–2096 (1999)

    Article  ADS  Google Scholar 

  58. A. Baumgartner, S. Dichtl, C.K. Hitzenberger, H. Sattmann, B. Robl, A. Moritz, Z.F. Fercher, W. Sperr, Polarization-sensitive optical coherence tomography of dental structures. Caries Res. 34(1), 59–69 (2000)

    Article  Google Scholar 

  59. B.T. Amaechi, S.M. Higham, A.G. Podoleanu, J.A. Rogers, D.A. Jackson, Use of optical coherence tomography for assessment of dental caries: quantitative procedure. J. Oral Rehab. 28, 1092–1093 (2001)

    Article  Google Scholar 

  60. D. Fried, J. Xie, S. Sahar, J.D.B. Featherstone, T.M. Breunig, C. Le, Imaging of early caries lesions and lesion progression using an all fiber 1310-nm polarization sensitive OCT system. J. Dent. Res. 81, A386–A386 (2002)

    Google Scholar 

  61. B.T. Amaechi, A.G. Podoleanu, S.M. Higham, D.A. Jackson, Correlation of quantitative light-induced fluorescence and optical coherence tomography applied for detection and quantification of early dental caries. J. Biomed. Opt. 8, 1297–1304 (2003)

    Article  Google Scholar 

  62. R.S. Jones, M. Staninec, D. Fried, Imaging artificial caries under composite sealants and restorations. J. Biomed. Opt. 9(6), 1297–1304 (2004)

    Article  ADS  Google Scholar 

  63. P. Ngaotheppitak, C.L. Darling, D. Fried, Measurement of the severity of natural smooth surface (interproximal) caries lesions with polarization sensitive optical coherence tomography. Lasers Surg. Med. 37(1), 78–88 (2005)

    Article  Google Scholar 

  64. J.M. Herrmann, C. Pitris, B.E. Bouma, S.A. Boppart, C.A. Jesser, D.L. Stamper, J.G. Fujimoto, M.E. Brezinski, High resolution imaging of normal and osteoarthritic cartilage with optical coherence tomography. J. Rheumatol. 26(3), 627–635 (1999)

    Google Scholar 

  65. W. Drexler, D. Stamper, C. Jesser, X.D. Li, C. Pitris, K. Saunders, S. Martin, M.B. Lodge, J.G. Fujimoto, M.E. Brezinski, Correlation of collagen organization with polarization sensitive imaging of in vitro cartilage: implications for osteoarthritis. J. Rheumatol. 28(6), 1311–1318 (2001)

    Google Scholar 

  66. Y.T. Pan, Z.G. Li, T.Q. Xie, C.R. Chu, Hand-held arthroscopic optical coherence tomography for in vivo high-resolution imaging of articular cartilage. J. Biomed. Opt. 8(4), 648–654 (2003)

    Article  ADS  Google Scholar 

  67. C.W. Han, C.R. Chu, N. Adachi, A. Usas, F.H. Fu, J. Huard, Y. Pan, Analysis of rabbit articular cartilage repair after chondroctye implantation using optical coherence tomography. Osteoarthritis Cartilage 11, 111–121 (2003)

    Article  Google Scholar 

  68. C.R. Chu, D. Lin, J.L. Geisler, C.T. Chu, F.H. Fu, Y.T. Pan, Arthroscopic microscopy of articular cartilage using optical coherence tomography. Am. J. Sports Med. 32, 699–709 (2004)

    Article  Google Scholar 

  69. X.D. Li, S. Martin, C. Pitris, R. Ghanta, D.L. Stamper, M. Harman, J.G. Fujimoto, M.E. Brezinski, High-resolution optical coherence tomographic imaging of osteoarthritic cartilage during open knee surgery. Arthritis Res. Ther. 7(2), R318–R323 (2005)

    Article  Google Scholar 

  70. N.A. Patel, J. Zoeller, D.L. Stamper, J.G. Fujimoto, M.E. Brezinski, Monitoring osteoarthritis in the rat model using optical coherence tomography. IEEE Trans. Med. Imag. 24(2), 155–159 (2005)

    Article  Google Scholar 

  71. J.I. Youn, G. Vargas, B.J.F. Wong, T.E. Milner, Depth-resolved phase retardation measurements for laser-assisted non-ablative cartilage reshaping. Phys. Med. Biol. 50(9), 1937–1950 (2005)

    Article  Google Scholar 

  72. M.C. Pierce, J. Strasswimmer, B.H. Park, B. Cense, J.F. de Boer, Advances in optical coherence tomography imaging for dermatology. J. Investig. Dermatol. 123(3), 458–463 (2004)

    Article  Google Scholar 

  73. P.A. Brigham, E. McLoughlin, Burn incidence and medical care use in the United States: estimates, trends, and data sources. J. Burn Care Rehabil. 17, 95 (1997)

    Article  Google Scholar 

  74. D.J. Maitland, J.T. Walsh, Quantitative measurements of linear birefringence during heating of native collagen. Lasers Surg. Med. 20, 310 (1997)

    Article  Google Scholar 

  75. S.M. Srinivas, J.F. de Boer, H. Park, K. Keikhanzadeh, H.E.L. Huang, J. Zhang, W.Q. Jung, Z.P. Chen, J.S. Nelson, Determination of burn depth by polarization-sensitive optical coherence tomography. J. Biomed. Opt. 9(1), 207–212 (2004)

    Article  ADS  Google Scholar 

  76. Y. Yasuno, S. Makita, Y. Sutoh, M. Itoh, T. Yatagai, Birefringence imaging of human skin by polarization-sensitive spectral interferometric optical coherence tomography. Opt. Lett. 27(20), 1803–1805 (2002)

    Article  ADS  Google Scholar 

  77. M.C. Pierce, J. Strasswimmer, B.H. Park, B. Cense, J.F. de Boer, Birefringence measurements in human skin using polarization-sensitive optical coherence tomography. J. Biomed. Opt. 9(2), 287–291 (2004)

    Article  ADS  Google Scholar 

  78. M. Pircher, E. Goetzinger, R. Leitgeb, C.K. Hitzenberger, Three dimensional polarization sensitive OCT of human skin in vivo. Opt. Express 12(14), 3236–3244 (2004)

    Article  ADS  Google Scholar 

  79. M.C. Pierce, R.L. Sheridan, B.H. Park, B. Cense, J.F. de Boer, Collagen denaturation can be quantified in burned human skin using polarization-sensitive optical coherence tomography. Burns 30(6), 511–517 (2004)

    Article  Google Scholar 

  80. J. Strasswimmer, M.C. Pierce, B.H. Park, V. Neel, J.F. de Boer, Polarization-sensitive optical coherence tomography of invasive basal cell carcinoma. J. Biomed. Opt. 9(2), 292–298 (2004)

    Article  ADS  Google Scholar 

  81. T. Kuwahara, J. Strasswimmer, J. de Boer, R. Anderson, Noninvasive measurements of the photodamaged human skin in vivo by polarization-sensitive optical coherence tomography. J. Am. Acad. Dermatol. 52(3), P163–P163 (2005)

    Google Scholar 

  82. M. Mujat, B.H. Park, B. Cense, T.C. Chen, J.F. de Boer, Auto-calibration of spectral-domain optical coherence tomography spectrometers for in vivo quantitative retinal nerve fiber layer birefringence determination. J. Biomed. Opt. 12(4):041205 (2007). doi: 10.1117/1.2764460

    Google Scholar 

  83. A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. Elzaiat, Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 117(1–2), 43–48 (1995)

    Article  ADS  Google Scholar 

  84. G. Hausler, M.W. Lindner, “Coherence Radar” and “Spectral Radar” – new tools for dermatological diagnosis. J. Biomed. Opt. 3(1), 21–31 (1998)

    Article  ADS  Google Scholar 

  85. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A.F. Fercher, In vivo human retinal imaging by Fourier domain optical coherence tomography. J. Biomed. Opt. 7(3), 457–463 (2002)

    Article  ADS  Google Scholar 

  86. S.H. Yun, G.J. Tearney, J.F. de Boer, N. Iftimia, B.E. Bouma, High-speed optical frequency-domain imaging. Opt. Express 11(22), 2953–2963 (2003)

    Article  ADS  Google Scholar 

  87. P. Andretzky, M.W. Lindner, J.M. Hermann, A. Schultz, M. Konzog, F. Kiesewetter, G. Hausler, Optical coherence tomography by spectral radar: dynamic range estimation and in vivo measurements of skin. Proc. SPIE 3567, 78–87 (1998)

    Article  ADS  Google Scholar 

  88. T. Mitsui, Dynamic range of optical reflectometry with spectral interferometry. Japan. J. Appl. Phys. 1-Reg. Pap. Short Notes Rev. Pap. 38(10), 6133–6137 (1999)

    Article  Google Scholar 

  89. R. Leitgeb, C.K. Hitzenberger, A.F. Fercher, Performance of Fourier domain vs. time domain optical coherence tomography. Opt. Express 11, 889–894 (2003)

    Article  ADS  Google Scholar 

  90. J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, B.E. Bouma, Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28(21), 2067–2069 (2003)

    Article  ADS  Google Scholar 

  91. M.A. Choma, M.V. Sarunic, C.H. Yang, J.A. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11, 2183–2189 (2003)

    Article  ADS  Google Scholar 

  92. J. Zhang, W.G. Jung, J.S. Nelson, Z.P. Chen, Full range polarization-sensitive Fourier domain optical coherence tomography. Opt. Express 12(24), 6033–6039 (2004)

    Article  ADS  Google Scholar 

  93. S.G. Guo, J. Zhang, L. Wang, J.S. Nelson, Z.P. Chen, Depth-resolved birefringence and differential optical axis orientation measurements with fiber-based polarization-sensitive optical coherence tomography. Opt. Lett. 29(17), 2025–2027 (2004)

    Article  ADS  Google Scholar 

  94. N.J. Kemp, H.N. Zaatari, J. Park, H.G. Rylander, T.E. Milner, Depth-resolved optic axis orientation in multiple layered anisotropic tissues measured with enhanced polarization-sensitive optical coherence tomography (EPS-OCT). Opt. Express 13(12), 4507–4518 (2005)

    Article  ADS  Google Scholar 

  95. S. Yazdanfar, C.H. Yang, M.V. Sarunic, J.A. Izatt, Frequency estimation precision in Doppler optical coherence tomography using the Cramer-Rao lower bound. Opt. Express 15, 410–416 (2004)

    Google Scholar 

  96. N.J. Kemp, J. Park, H.N. Zaatari, H.G. Rylander, T.E. Milner, High-sensitivity determination of birefringence in turbid media with enhanced polarization-sensitive optical coherence tomography. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 22(3), 552–560 (2005)

    Article  ADS  Google Scholar 

  97. J.M. Schmitt, Array detection for speckle reduction in optical coherence microscopy. Phys. Med. Biol. 42(7), 1427–1439 (1997)

    Article  ADS  Google Scholar 

  98. J.M. Schmitt, S.H. Xiang, K.M. Yung, Speckle in optical coherence tomography. J. Biomed. Opt. 4(1), 95–105 (1999)

    Article  ADS  Google Scholar 

  99. M. Bashkansky, J. Reintjes, Statistics and reduction of speckle in optical coherence tomography. Opt. Lett. 25(8), 545–547 (2000)

    Article  ADS  Google Scholar 

  100. M.A. Sapia, D.C. Colosi, L.L. Otis, Reduction of speckle noise in OCT images. J. Dent. Res. 79, 550–550 (2000)

    Google Scholar 

  101. N. Iftimia, B.E. Bouma, G.J. Tearney, Speckle reduction in optical coherence tomography by “path length encoded” angular compounding. J. Biomed. Opt. 8(2), 260–263 (2003)

    Article  ADS  Google Scholar 

  102. D.C. Adler, T.H. Ko, J.G. Fujimoto, Speckle reduction in optical coherence tomography images by use of a spatially adaptive wavelet filter. Opt. Lett. 29(24), 2878–2880 (2004)

    Article  ADS  Google Scholar 

  103. J.H. Kim, J.W. Oh, D.T. Miller, T.E. Milner, Speckle reduction in OCT using mode averaging. Lasers Surg. Med. 8–8 (2004)

    Google Scholar 

  104. B.H. Park, M.C. Pierce, B. Cense, J.F. de Boer. Speckle averaging for optical coherence tomography. SPIE Photon. West. (2004)

    Google Scholar 

  105. J. Kim, D.T. Miller, E. Kim, S. Oh, J. Oh, T.E. Milner, Optical coherence tomography speckle reduction by a partially spatially coherent source. J. Biomed. Opt. 10(6), 064034 (2005)

    Article  ADS  Google Scholar 

  106. D.L. Marks, T.S. Ralston, S.A. Boppart, Speckle reduction by I-divergence regularization in optical coherence tomography. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 22(11), 2366–2371 (2005)

    Article  ADS  Google Scholar 

  107. A.E. Desjardins, B.J. Vakoc, G.J. Tearney, B.E. Bouma, Speckle reduction in OCT using massively-parallel detection and frequency-domain ranging. Opt. Express 14(11), 4736–4745 (2006)

    Article  ADS  Google Scholar 

  108. B.H. Park, B. Cense, M.C. Pierce, J.F. de Boer, A novel technique for speckle reduction with multi-functional optical coherence tomography. SPIE Photon. West. (2006)

    Google Scholar 

  109. N. Ugryumova, S.V. Gangnus, S.J. Matcher, Three-dimensional optic axis determination using variable-incidence-angle polarization-optical coherence tomography. Opt. Lett. 31(15), 2305–2307 (2006)

    Article  ADS  Google Scholar 

  110. M.C. Pierce, M. Shishkov, B.H. Park, N.A. Nassif, B.E. Bouma, G.J. Tearney, J.F. de Boer, Effects of sample arm motion in endoscopic polarization-sensitive optical coherence tomography. Opt. Express 13(15), 5739–5749 (2005)

    Article  ADS  Google Scholar 

  111. B. Stanford, D.L. Stamper, P.R. Herz, S.D. Giattina, S.B. Adams, A.L. Robertson, T.H. Ko, M.J. Roberts, N.D. Joshi, J.G. Fujimoto, P.J. Fitzgerald, M.E. Brezinski, Polarization sensitive optical coherence tomography imaging in coronary arteries for enhanced identification of vascular lesion components. Circulation 110(17), 524–524 (2004)

    Google Scholar 

  112. S. Nadkarni, M. Pierce, H. Park, J. deBoer, S. Houser, J. Bressner, B. Bouma, G. Tearney, Polarization-sensitive optical coherence tomography for the analysis of collagen content in atherosclerotic plaques. Circulation 112(17), U679–U679 (2005)

    Google Scholar 

  113. S.K. Nadkarni, M. Pierce, H. Park, J. deBoer, S. Houser, J. Bressner, B. Bouma, G. Tearney, Analysis of collagen birefringence in atherosclerotic plaques using polarization sensitive optical coherence tomography. Am. J. Cardiol. 96(7A), 111H–111H (2005)

    Google Scholar 

  114. S. Shortkroff, S.D. Giattina, B.K. Courtney, P.R. Herz, D.L. Stamper, J.J. Fugimoto, M.E. Brezinski, Collagen content of coronary plaque measured by polarization sensitive optical coherence tomography (PS-OCT). J. Am. Coll. Cardiol. 47(4), 121A–121A (2006)

    Google Scholar 

  115. S.K. Nadkarni, M.C. Pierce, B.H. Park, J.F. de Boer, P. Whittaker, B.E. Bouma, J.E. Bressner, E. Halpern, S.L. Houser, G.J. Tearney, Measurement of collagen and smooth muscle cell content in atherosclerotic plaques using polarization-sensitive optical coherence tomography. J. Am. Coll. Cardiol. 49(13), 1474–1481 (2007)

    Article  Google Scholar 

  116. J.J. Pasquesi, S.C. Schlachter, M.D. Boppart, E. Chaney, S.J. Kaufman, S.A. Boppart, In vivo detection of exercise-induced ultrastructural changes in genetically-altered murine skeletal muscle using polarization-sensitive optical coherence tomography. Opt. Express 14(4), 1547–1556 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by funding from the National Institutes of Health (1R24 EY12877, R01 EY014975, and RR19768, K99/R00 EB007241), the Department of Defense (F4-9820-01-1-0014), the Center for Integration of Medicine and Innovative Technology, and a gift from Dr. and Mrs. J.S. Chen to the Optical Diagnostics Program at the Wellman Center for Photomedicine. The authors would like to thank a number of graduate students and postdoctoral research fellows that have contributed to the results presented in this chapter: Mark Pierce, PhD, Barry Cense, PhD, and Mircea Mujat, PhD. We would also like to acknowledge the contributions of Dr. Teresa Chen, MD, of the Massachusetts Ear and Eye Infirmary.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Hyle Park .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Park, B.H., de Boer, J.F. (2015). Polarization Sensitive Optical Coherence Tomography. In: Drexler, W., Fujimoto, J. (eds) Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-06419-2_34

Download citation

Publish with us

Policies and ethics