Skip to main content

Time Domain Full Field Optical Coherence Tomography Microscopy

  • Reference work entry
Optical Coherence Tomography

Abstract

This chapter mostly describes the main characteristics of the full field OCM (FFOCM) systems with an emphasis on the main differences with other systems described in this book: the use of spatially and temporally incoherent sources and large numerical aperture objectives that leads to a 3D ultra-high spatial resolution. We also show that FFOCM can be associated to other imaging modalities such as fluorescence and elasticity in order to increase its sensitivity and specificity when used as a diagnosis tool. Finally FFOCM is shown to successfully match the requirements of a rigid endoscopic system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Leitgeb, C.K. Hitzenberger, A.F. Fercher, Performance of Fourier-domain vs. time-domain optical coherence tomography. Opt. Express 11, 889–894 (2003)

    Article  ADS  Google Scholar 

  2. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A.F. Fercher, In-vivo human retinal imaging by Fourier domain optical coherence tomography. J. Biomed. Opt. 7, 457–463 (2002)

    Article  ADS  Google Scholar 

  3. R. Leitgeb, W. Drexler, Unterhuber, B. Hermann, T. Bajraszewski, T. Le, A. Stingl, A. Fercher, Ultrahigh resolution Fourier domain optical coherence tomography. Opt. Express 12(10), 2156–2165 (2004)

    Article  ADS  Google Scholar 

  4. M.A. Choma, M.V. Sarunic, C.H. Yang, J.A. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11, 2183–2189 (2003)

    Article  ADS  Google Scholar 

  5. B.E. Yun, S.H. Tearney, G.J. de Boer, J.F. Iftimia, N. Bouma, High-speed optical frequency-domain imaging. Opt. Express 11(22), 2953–2963 (2009)

    Article  ADS  Google Scholar 

  6. L. Vabre, A. Dubois, A.C. Boccara, Thermal-light full-field optical coherence tomography. Opt. Lett. 27, 530–532 (2002)

    Article  ADS  Google Scholar 

  7. A. Dubois, L. Vabre, A.C. Boccara, E. Beaurepaire, High-resolution full-field optical coherence tomography with a Linnik microscope. Appl. Opt. 41, 805–812 (2002)

    Article  ADS  Google Scholar 

  8. A. Dubois, K. Grieve, G. Moneron, R. Lecaque, L. Vabre, A.C. Boccara, Ultrahigh-resolution full-field optical coherence tomography. Appl. Opt. 43, 2874–2882 (2004)

    Article  ADS  Google Scholar 

  9. A. Dubois, G. Moneron, K. Grieve, A.C. Boccara, Three-dimensional cellular-level imaging using full-field optical coherence tomography. Phys. Med. Biol. 49, 1227–1234 (2004)

    Article  Google Scholar 

  10. E. Beaurepaire, A.C. Boccara, M. Lebec, L. Blanchot, H. Saint-Jalmes, Full-field optical coherence microscopy. Opt. Lett. 23(4), 244–246 (1998)

    Article  ADS  Google Scholar 

  11. W.Y. Oh, B.E. Bouma, N. Iftimia, S.H. Yun, R. Yelin, G.J. Tearney, Ultrahigh-resolution full-field optical coherence microscopy using InGaAs camera. Opt. Express 14, 726–735 (2006)

    Article  ADS  Google Scholar 

  12. W. Drexler, U. Morgner, F.X. Kärtner, C. Pitris, S.A. Boppart, X.D. Li, E.P. Ippen, J.G. Fujimoto, In-vivo ultrahigh-resolution optical coherence tomography. Opt. Lett. 24, 1221–1223 (1999)

    Article  ADS  Google Scholar 

  13. K. Wiesauer, M. Pircher, E. Götzinger, S. Bauer, R. Engelke, G. Ahrens, G. Grützner, C. Hitzenberger, D. Stifter, En-face scanning optical coherence tomography with ultra-high resolution for material investigation. Opt. Express 13, 1015–1024 (2005)

    Article  ADS  Google Scholar 

  14. J. Fujimoto, G.G.J. Tearney, M.E. Brezinski, J.F. Souther, B.E. Bouma, M.R. Hee, Determination of the refractive index of highly scattering human tissue by optical coherence tomography. Opt. Lett. 20(21), 2258–2260 (1995)

    Article  ADS  Google Scholar 

  15. S. Labiau, G. David, S. Gigan, A.C. Boccara, Defocus test and defocus correction in full-field optical coherence tomography. Opt. Lett. 34(10), 1576–1578 (2009)

    Article  ADS  Google Scholar 

  16. J. Binding, J.B. Arous, J.-F. Léger, S. Gigan, C. Boccara, L. Bourdieu, Brain refractive index measured in vivo with high- NA defocus-corrected full-field OCT and consequences for two-photon microscopy. Opt. Express 19(6), 4833–4847 (2011)

    Article  ADS  Google Scholar 

  17. Dubois, G. Moneron, A.C. Boccara, Thermal-light full-field optical coherence tomography in the 1.2 mu m wavelength region. Opt. Commun. 266(2), 738–743 (2006)

    Article  ADS  Google Scholar 

  18. D. Sacchet, J. Moreau, P. Georges, A. Dubois, Simultaneous dual-band ultrahigh-resolution full-field optical coherence tomography. Opt. Express 16, 19434 (2008)

    Article  ADS  Google Scholar 

  19. A. Burcheri-Curatolo, Avancées en Tomographie Optique Plein Champ pour des applications cliniques et biologie du développement. PhD thesis, Paris VI; 2012

    Google Scholar 

  20. C. Boccara, in French-Japanese Workshop, Science for Conservation of Cultural Heritage, eds. by N. Kamba, M. Menu (E.D. Hermann, Paris, 2012)

    Google Scholar 

  21. F. Harms, E. Dalimier, P. Vermeulen, A. Fragola, A.C. Boccara, Multimodal full-field optical coherence tomography on biological tissue: toward all optical digital pathology. Proc. SPIE 8216, Multimodal Biomedical Imaging VII, 821609 (2012)

    Google Scholar 

  22. G.J. Tearney, M.E. Brezinski, B.E. Bouma, S.A. Boppart, C. Pitris, J.F. Southern, J.G. Fujimoto, In vivo endoscopic optical biopsy with optical coherence tomography. Science 276, 2037–2039 (1997)

    Article  Google Scholar 

  23. A.D. Aguirre, J. Sawinski, S.-W. Huang, C. Zhou, W. Denk, J.G. Fujimoto, High speed optical coherence microscopy with autofocus adjustment and a miniaturized endoscopic imaging probe. Opt. Express 18, 4222–4239 (2010)

    Article  ADS  Google Scholar 

  24. T.P.M. Goderie, G. van Soest, H.M. Garcia-Garcia, N. Gonzalo, S. Koljenović, G.J.L.H. van Leenders, F. Mastik, E. Regar, J.W. Oosterhuis, P.W. Serruys, A.F.W. van der Steen, Combined optical coherence tomography and intravascular ultrasound radio frequency data analysis for plaque characterization. Classification accuracy of human coronary plaques in vitro. Int. J. Cardiovasc. Imaging 26, 843–850 (2010)

    Article  Google Scholar 

  25. N.V. Iftimia, M. Mujat, T. Ustun, R.D. Ferguson, V. Danthu, D.X. Hammer, Spectral-domain low coherence interferometry/optical coherence tomography system for fine needle breast biopsy guidance. Rev. Sci. Instrum. 80, 024302 (2009)

    Article  ADS  Google Scholar 

  26. B.C. Quirk, R.A. McLaughlin, A. Curatolo, R.W. Kirk, P.B. Noble, D.D. Sampson, In situ imaging of lung alveoli with an optical coherence tomography needle probe. J. Biomed. Opt. 16, 036009 (2011)

    Article  ADS  Google Scholar 

  27. W.-Y. Oh, B.E. Bouma, N. Iftimia, R. Yelin, G.J. Tearney, Spectrally-modulated full-field optical coherence microscopy for ultrahigh-resolution endoscopic imaging. Opt. Express 14, 8675–8684 (2006)

    Article  ADS  Google Scholar 

  28. H.D. Ford, R.P. Tatam, Fibre imaging bundles for full-field optical coherence tomography. Meas. Sci. Technol. 18, 2949–2957 (2007)

    Article  ADS  Google Scholar 

  29. H.D. Ford, R. Beddows, P. Casaubieilh, R.P. Tatam, Comparative signal-to-noise analysis of fibre-optic based optical coherence tomography systems. J. Mod. Opt. 52, 1965–1979 (2005)

    Article  ADS  Google Scholar 

  30. Latrive, A.C. Boccara, In vivo and in situ cellular imaging full-field optical coherence tomography with a rigid endoscopic probe. Biomed. Opt. Express 2(10), 2897–2904 (2011)

    Article  Google Scholar 

  31. H.D. Ford, R.P. Tatam, Characterization of optical fiber imaging bundles for swept-source optical coherence tomography. Appl. Opt. 50(5), 627–640 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 FFOCM: Signals and Noises

(The calculation is performed for a single pixel of the camera and the notations are indicated on the Fig. 25.18)

Fig. 25.18
figure 18

Representation of the various light levels impinging the various parts of the interferometer

  1. (a)

    Negligible incoherent and stray light level (N inch < αN 0)

    Let a N 0 be the number of photoelectrons generated from the reference arm αN 0N sat.

    Let R N 0 be the number of photoelectrons generated from the object slice under examination (R <<α).

    Let N inch be the number of stray light- and incoherent light-induced photoelectrons (N inch <<N sat).

    For a π-shifted two-phase detection (+ or −),

    $$ \begin{array}{l}{I}_{+}=\alpha {N}_0+R{N}_0+{N}_{\mathrm{inch}}+2\sqrt{\alpha {N}_0R{N}_0} \cos \varphi \\ {}{I}_{-}=\alpha {N}_0+R{N}_0+{N}_{\mathrm{inch}}-2\sqrt{\alpha {N}_0R{N}_0} \cos \varphi \end{array} $$

    The measured signal is

    $$ \begin{array}{l}S={I}_{+}-{I}_{-}\\ {}\kern0.48em =4\sqrt{\alpha {N}_0R{N}_0 \cos \varphi}\end{array} $$

    We usually take its absolute value:

    $$ \begin{array}{l}\left\langle \left| \cos \varphi \right|\right\rangle =\left\langle \sqrt{{ \cos}^2\varphi}\right\rangle \\ {}\kern2.16em =\left\langle \sqrt{\frac{1+ \cos \left(2\varphi \right)}{2}}\right\rangle \\ {}\kern2.16em =1/\sqrt{2}\end{array} $$

    Please note that this is true for a random scattering sample and not for a mirror sample.

    The signal is then

    $$ \begin{array}{l}S=4\sqrt{\alpha {N}_0R{N}_0/2}\\ {}\kern0.48em =4\sqrt{N_{\mathrm{sat}}R{N}_0/2}\end{array} $$

    The shot noise being

    \( B=\sqrt{N_{\mathrm{sat}}}=\sqrt{\alpha {N}_0} \) (the reference being the major signal)

    The signal-to-noise ratio is

    $$ \begin{array}{l}\mathrm{S}/\mathrm{B}=4\sqrt{R{N}_0/2}\\ {}\kern1.2em =4\sqrt{R{N}_{\mathrm{sat}}/2\alpha}\end{array} $$

    The limit of detection (signal = noise) corresponds to \( 4\sqrt{R_{\min }{N}_{\mathrm{sat}}/2\alpha =1} \), so that

    $$ {R}_{\min }=\frac{\alpha }{8{N}_{\mathrm{sat}}} $$

    Typical numerical value

    Using typical values of α = 0.16 N sat = 200,000 for silicon cameras, one gets

    R min = 10−7 or 70 dB for a two-image acquisition, 1 Mpixels, 75 processed images/s.

    Averaging 100 images takes a few more than 1 s and leads to Rmin = 10−9 or 90 dB.

  2. (b)

    Significant incoherent and stray light level (N inch = or >αN 0)

    We have then Nsat = αN 0 + N inch

    The signal is

    $$ \begin{array}{l}S=4\sqrt{\alpha {N}_0R{N}_0/2}\\ {}\kern0.48em =4\sqrt{\left({N}_{\mathrm{sat}}-{N}_{\mathrm{inch}}\right)R{N}_0/2}\end{array} $$

    The shot noise is \( B=\sqrt{N_{\mathrm{sat}}} \)

    The signal-to-noise ratio is

    $$ \begin{array}{l}\mathrm{S}/\mathrm{B}=4\sqrt{\frac{\left({N}_{\mathrm{sat}}-{N}_{\mathrm{inch}}\right)R{N}_0}{2{N}_{\mathrm{sat}}}}\\ {}\kern1.60em =4\sqrt{\frac{\alpha {N}_0R{N}_0}{2{N}_{\mathrm{sat}}}}\end{array} $$

    The limit of detection (signal = noise) corresponds to \( 4\sqrt{\frac{\left({N}_{\mathrm{sat}}-{N}_{\mathrm{inch}}\right){R}_{\min }{N}_0}{2{N}_{\mathrm{sat}}}}=1 \)

    $$ {R}_{\min }=\frac{1}{8.\left({N}_{\mathrm{sat}}-{N}_{\mathrm{inch}}\right)}\cdot \frac{N_{\mathrm{sat}}}{N_0} $$
    $$ {R}_{\min }=\frac{\alpha {N}_{\mathrm{sat}}}{8.{\left({N}_{\mathrm{sat}}-{N}_{\mathrm{inch}}\right)}^2} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Harms, F., Latrive, A., Boccara, A.C. (2015). Time Domain Full Field Optical Coherence Tomography Microscopy. In: Drexler, W., Fujimoto, J. (eds) Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-06419-2_26

Download citation

Publish with us

Policies and ethics