Skip to main content

VCSEL Swept Light Sources

  • Reference work entry
Optical Coherence Tomography

Abstract

Wavelength-swept light sources are widely recognized as a critical enabling technology for swept source optical coherence tomography (SS-OCT). In recent years, amplified micro-electromechanical systems tunable vertical cavity surface-emitting lasers (MEMS-VCSELs) have emerged as a high performance swept source, providing a unique combination of of wide tuning range, high maximum sweep rate, variable sweep rate, long dynamic coherence length enabled by dynamic mode-hop-free single mode operation, high optical power, and excellent imaging quality. Other important parameters provided by these devices include operation in a stable polarization state, low output power ripple, and linearized wavelength sweeping. This work describes MEMS-VCSEL device design, fabrication, and performance for devices in the 1050nm band relevant to ophthalmic imaging, and the 1310nm band relevant to vascular, skin, and anatomic imaging. Tuning ranges achieved include 100 nm at 1050nm and 150nm at 1310, with the latter result representing the widest tuning range of any MEMS-VCSEL at any wavelength. Both 1050 and 1310nm devices have enabled record imaging speed, record imaging range, and enhanced SS-OCT imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Huber, M. Wojtkowski, K. Taira et al., Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. Opt. Express 13(9), 3513–3528 (2005)

    Article  ADS  Google Scholar 

  2. D.C. Adler, Y. Chen, R. Huber et al., Three-dimensional endomicroscopy using optical coherence tomography. Nat. Photonics 1(12), 709–716 (2007)

    Article  ADS  Google Scholar 

  3. M.A. Choma, M.V. Sarunic, C.H. Yang et al., Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11(18), 2183–2189 (2003)

    Article  ADS  Google Scholar 

  4. I. Grulkowski, J.J. Liu, B. Potsaid et al., Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers. Biomed. Opt. Express 3(11), 2733–2751 (2012)

    Article  Google Scholar 

  5. B. Potsaid, B. Baumann, D. Huang et al., Ultrahigh speed 1050 nm swept source/ Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt. Express 18(19), 20029–20048 (2010)

    Article  ADS  Google Scholar 

  6. R. Huber, D.C. Adler, J.G. Fujimoto, Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Opt. Lett. 31(20), 2975–2977 (2006)

    Article  ADS  Google Scholar 

  7. R. Huber, M. Wojtkowski, J.G. Fujimoto, Fourier Domain Mode Locking (FDML): a new laser operating regime and applications for optical coherence tomography. Opt. Express 14(8), 3225–3237 (2006)

    Article  ADS  Google Scholar 

  8. W. Wieser, T. Klein, D.C. Adler et al., Extended coherence length megahertz FDML and its application for anterior segment imaging. Biomed. Opt. Express 3(10), 2647–2657 (2012)

    Article  Google Scholar 

  9. T. Klein, W. Wieser, C.M. Eigenwillig et al., Megahertz OCT for ultrawide-field retinal imaging with a 1050 nm Fourier domain mode locked laser. Opt. Express 19(4), 3044–3062 (2011)

    Article  ADS  Google Scholar 

  10. W. Wieser, B.R. Biedermann, T. Klein et al., Multi-megahertz OCT: high quality 3D imaging at 20 million A-scans and 4.5 GVoxels per second. Opt. Express 18(14), 14685–14704 (2010)

    Article  ADS  Google Scholar 

  11. M.C.Y. Huang, Y. Zhou, C.J. Chang-Hasnain, A nanoelectromechanical tunable laser. Nat. Photonics 2(3), 180–184 (2008)

    Article  ADS  Google Scholar 

  12. F.M. di Sopra, H.P. Zappe, M. Moser et al., Near-infrared vertical-cavity surface-emitting lasers with 3-MHz linewidth. IEEE Photon. Technol. Lett. 11(12), 1533–1535 (1999)

    Article  ADS  Google Scholar 

  13. H. Halbritter, C. Sydlo, B. Kogel et al., Linewidth and chirp of MEMS-VCSELs. IEEE Photon. Technol. Lett. 18(17–20), 2180–2182 (2006)

    Article  ADS  Google Scholar 

  14. M.S. Wu, E.C. Vail, G.S. Li et al., Tunable micromachined vertical cavity surface emitting laser. Electron. Lett. 31(19), 1671–1672 (1995)

    Article  Google Scholar 

  15. Y. Matsui, D. Vakhshoori, W. Peidong et al., Complete polarization mode control of long-wavelength tunable vertical-cavity surface-emitting lasers over 65-nm tuning, up to 14-mW output power. IEEE J. Quantum Electron. 39(9), 1037–1048 (2003)

    Article  ADS  Google Scholar 

  16. M. Lackner, M. Schwarzott, F. Winter et al., CO and CO2 spectroscopy using a 60 nm broadband tunable MEMS-VCSEL at ∼1.55 μm. Opt. Lett. 31(21), 3170–3172 (2006)

    Article  ADS  Google Scholar 

  17. T. Svensson, M. Andersson, L. Rippe et al., VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids. Appl. Phys. B Lasers Opt. 90(2), 345–354 (2008)

    Article  ADS  Google Scholar 

  18. V. Jayaraman, G.D. Cole, M. Robertson et al., Rapidly swept, ultra-widely-tunable 1060 nm MEMS-VCSELs. Electron. Lett. 48(21), 1331–1333 (2012)

    Article  Google Scholar 

  19. V. Jayaraman, G.D. Cole, M. Robertson et al., High-sweep-rate 1310 nm MEMS-VCSEL with 150 nm continuous tuning range. Electron. Lett. 48(14), 867–9 (2012)

    Article  Google Scholar 

  20. B. Potsaid, V. Jayaraman, J.G. Fujimoto, et al., MEMS tunable VCSEL light source for ultrahigh speed 60kHz – 1MHz axial scan rate and long range centimeter class OCT imaging. Proc. SPIE Int. Soc. Opt. Eng. 8213, 82130M (2012)

    Google Scholar 

  21. V. Jayaraman, J. Jiang, H. Li, et al., OCT imaging up to 760 kHz axial scan rate using single-mode 1310 nm MEMS-tunable VCSELs with >100 nm tuning range. CLEO: 2011 – Laser Science to Photonic Applications, pp. 1–2 (2011)

    Google Scholar 

  22. V. Jayaraman, T.J. Goodnough, T.L. Beam et al., Continuous-wave operation of single-transverse-mode 1310-nm VCSELs up to 115 degrees C. IEEE Photon. Technol. Lett. 12(12), 1595–1597 (2000)

    Article  ADS  Google Scholar 

  23. M.H. MacDougal, P.D. Dapkus, A.E. Bond et al., Design and fabrication of VCSELs with AlxOy-GaAs DBRs. IEEE J. Sel. Top. Quantum Electron. 3(3), 905–915 (1997)

    Article  Google Scholar 

  24. C. Gierl, T. Gruendl, P. Debernardi et al., Surface micromachined tunable 1.55 μm-VCSEL with 102 nm continuous single-mode tuning. Opt. Express 19(18), 17336–17343 (2011)

    Article  ADS  Google Scholar 

  25. S.W. Corzine, R.S. Geels, J.W. Scott et al., Design of Fabry-Perot surface-emitting lasers with a periodic-gain structure. IEEE J. Quantum Electron. 25(6), 1513–1524 (1989)

    Article  ADS  Google Scholar 

  26. C.J. Chang-Hasnain, High-contrast gratings as a new platform for integrated optoelectronics. Semicond. Sci. Technol. 26(1), 11 (2011)

    Article  Google Scholar 

  27. D.I. Babic, Y.C. Chung, N. Dagli et al., Modal reflection of quarter-wave mirrors in vertical-cavity lasers. IEEE J. Quantum Electron. 29(6), 1950–1962 (1993)

    Article  ADS  Google Scholar 

  28. S.W. Corzine, L.A. Coldren, Theoretical gain in compressive and tensile-strained InGaAs/InGaAsP quantum wells. Appl. Phys. Lett. 59(5), 588–590 (1991)

    Article  ADS  Google Scholar 

  29. S.W. Corzine, R.H. Yan, L.A. Coldren, Theoretical gain in strained InGaAa/AlGaAs quantum-wells including valence-band mixing effects. Appl. Phys. Lett. 57(26), 2835–2837 (1990)

    Article  ADS  Google Scholar 

  30. P.J.A. Thijs, L.F. Tiemeijer, J.J.M. Binsma et al., Progress in long-wavelength strained-layer InGaAsP quantum-well semiconductor-lasers and amplifiers. IEEE J. Quantum Electron. 30(2), 477–499 (1994)

    Article  ADS  Google Scholar 

  31. R.S. Geels, S.W. Corzine, L.A. Coldren, InGaAs vertical-cavity surface-emitting lasers. IEEE J. Quantum Electron. 27(6), 1359–1367 (1991)

    Article  ADS  Google Scholar 

  32. H. Hatakeyama, T. Anan, T. Akagawa et al., Highly reliable high-speed 1.1-mu m-range VCSELs with InGaAs/GaAsP-MQWs. IEEE J. Quantum Electron. 46(6), 890–897 (2010)

    Article  ADS  Google Scholar 

  33. C.E. Zah, R. Bhat, B.N. Pathak et al., High-performance uncooled 1.3-um Al(x)Ga(y)In(1-x-y)As/InP strained-layer quantum-well lasers for subscriber loop applications. IEEE J. Quantum Electron. 30(2), 511–523 (1994)

    Article  ADS  Google Scholar 

  34. A. Caliman, A. Mereuta, G. Suruceanu et al., 8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550-nm band. Opt. Express 19(18), 16996–17001 (2011)

    Article  ADS  Google Scholar 

  35. B. Kogel, K. Zogal, S. Jatta, et al., Micromachined tunable vertical-cavity surface-emitting lasers with narrow linewidth for near infrared gas detection. Proc. SPIE Int. Soc. Opt. Eng., 7266, 72660O (2008)

    Google Scholar 

  36. C.J. Chang-Hasnain, Tunable VCSEL. IEEE J. Sel. Top. Quantum Electron. 6(6), 978–987 (2000)

    Article  Google Scholar 

  37. M. Bao, H. Yang, Squeeze film air damping in MEMS. Sensors Actuators A Phys 136(1), 3–27 (2007)

    Article  Google Scholar 

  38. K.L. Turner, P.G. Hartwell, N.C. MacDonald, Multi-dimensional MEMS motion characterization using laser vibrometry. Digest of Technical Proceedings: transducers, ‘99: the 10th International Conference on Solid State Sensors and Actuators, Sendai, Japan. pp. 1144–1147 (1999)

    Google Scholar 

  39. C. Rembe, R. Kant, R.S. Muller, Optical measurement methods to study dynamic behavior in MEMS. Proc. SPIE Int. Soc. Opt. Eng. 4400, 127–137 (2001)

    ADS  Google Scholar 

  40. G.D. Cole, E. Behymer, T.C. Bond et al., Short-wavelength MEMS-tunable VCSELs. Opt. Express 16(20), 16093–16103 (2008)

    Article  ADS  Google Scholar 

  41. A. Black, A.R. Hawkins, N.M. Margalit et al., Wafer fusion: materials issues and device results. IEEE J. Sel. Top. Quantum Electron. 3(3), 943–951 (1997)

    Article  Google Scholar 

  42. J.J. Dudley, D.I. Babic, R. Mirin et al., Low-threshold, wafer fused long-wavelength vertical-cavity lasers. Appl. Phys. Lett. 64(12), 1463–1465 (1994)

    Article  ADS  Google Scholar 

  43. I. Grulkowski, J.J. Liu, B. Potsaid, et al., High-Precision, high-accuracy ultralong-range, swept source optical coherence tomography using vertical cavity surface emitting laser light source. Opt. Lett. 38(5), 673–675 (2013)

    Google Scholar 

  44. B. Baumann, C. WooJhon, B. Potsaid et al.. Swept source/ Fourier domain polarization sensitive optical coherence tomography with a passive polarization delay unit. Opt. Express 20(9), 10229–41 (2012)

    Article  ADS  Google Scholar 

  45. M. Ortsiefer, M. Goerblich, Y. Xu et al., Polarization control in buried tunnel junction VCSELs using a birefringent semiconductor/dielectric subwavelength grating. IEEE Photon. Technol. Lett. 22(1), 15–17 (2010)

    Article  ADS  Google Scholar 

  46. V. Jayaraman, D.D. John, C. Burgner, et al., Recent Advances in MEMS-VCSELs for High Performance Structural and Functional SS-OCT Imaging. Proc. SPIE Int. Soc. Opt. Eng. 8934 (2014)

    Google Scholar 

  47. T.-C. Lu, C.-C. Kao, H.-C. Kuo et al., CW lasing of current injection blue GaN-based vertical cavity surface emitting laser. Appl. Phys. Lett. 92(14), 141102 (2008)

    Article  ADS  Google Scholar 

  48. G. Boehm, A. Bachmann, J. Rosskopf et al., Comparison of InP- and GaSb-based VCSELs emitting at 2.3 mu m suitable for carbon monoxide detection. J. Cryst. Growth 323(1), 442–445 (2011)

    Article  ADS  Google Scholar 

  49. C. WooJohn, B. Potsaid, V. Jayaraman, et al., Phase-sensitive swept source optical coherence tomography imaging of the human retina with a vertical cavity surface-emitting laser light source. Opt. Lett. 38(3), 338–340 (2013)

    Google Scholar 

  50. T.H. Tsai, B. Potsaid, Y.K. Tao, et al., Ultrahigh speed endoscopic optical coherence tomography using micromotor imaging catheter and VCSEL technology. Biomed. Opt. Express 4(7), 1119–1132 (2013)

    Google Scholar 

  51. C.D. Lu, M.F. Kraus, B. Potsaid et al., Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror. Biomed Opt. Express 5(1), 239–311 (2014)

    Google Scholar 

  52. W Choi, K.J. Mohler, B. Potsaid et al. Choriocapillaris and Choroidal Microvasculature Imaging with Ultrahigh Speed OCT Angiography. PLOS One 8(12), e81499 (2013)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Cancer Institute grant R44CA101067, R01-CA075289-16; Air Force Office of Scientific Research contracts AFOSR FA9550-10-1-0063, FA9550-10-1-0551; and matching funds provided by Thorlabs. The content is solely the responsibility of the authors and does not necessarily represent the views of the Air Force or the National Cancer Institute of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vijaysekhar Jayaraman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Jayaraman, V. et al. (2015). VCSEL Swept Light Sources. In: Drexler, W., Fujimoto, J. (eds) Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-06419-2_23

Download citation

Publish with us

Policies and ethics