Skip to main content

Wavelength Swept Lasers

  • Reference work entry
Optical Coherence Tomography

Abstract

In optical interferometric metrology, the wavelength of light serves as a reference for length. At a given optical wavelength, an interference signal varies as a sinusoidal function of distance with a period equal to the wavelength. Although this approach offers unrivaled precision, the periodic signal results in a 2π ambiguity for measurement of lengths greater than one wavelength. In optical coherence tomography (OCT), one wishes to determine light scattering distances and distribution within a sample, but without the ambiguity. To accomplish this, OCT is based on interferometry using many optical wavelengths, each serving as a “ruler” with different periodicities. OCT traditionally has used broadband light sources providing a wide range of wavelengths, all simultaneously. Alternatively, a tunable light source emitting one wavelength at a time, rapidly swept over a broad spectral range, can also be used to achieve the absolute ranging capability in OCT. In this chapter, we describe a technical overview of these new emerging sources. We begin with a discussion general specifications of these light sources, the review basic fundamentals of laser and wavelength tuning. Finally, we discuss the principles of various techniques developed to date for high-speed and wide tuning range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Derickson, Fiber Optic Test and Measurement (Prentice Hall PTR, Upper Saddle River, 1998)

    Google Scholar 

  2. T. Vo-Dinh, Biomedical Photonics Handbook (CRC Press, Boca Raton, 2003)

    Book  Google Scholar 

  3. A. Yariv, P. Yeh, A. Yariv, Photonics: Optical Electronics in Modern Communications (Oxford University Press, New York, 2007)

    Google Scholar 

  4. B.E.A. Saleh, M.C. Teich, Fundamentals of Photonics (Wiley, New York, 1991)

    Book  Google Scholar 

  5. A.E. Siegman, Lasers (University Science Books, Mill Valley, 1986)

    Google Scholar 

  6. E. Hecht, Optics (Addison-Wesley, Reading, 2002)

    Google Scholar 

  7. S.R. Chinn, E.A. Swanson, J.G. Fujimoto, Optical coherence tomography using a frequency-tunable optical source. Opt. Lett. 22, 340–342 (1997)

    Article  ADS  Google Scholar 

  8. K. Liu, M.G. Littman, Novel geometry for single-mode scanning of tunable lasers. Opt. Lett. 6, 117–118 (1981)

    Article  ADS  Google Scholar 

  9. S.H. Yun, D.J. Richardson, D.O. Culverhouse, B.Y. Kim, Wavelength-swept fiber laser with frequency shifted feedback and resonantly swept intra-cavity acoustooptic tunable filter. IEEE J. Sel. Top. Quant. Electron. 3, 1087–1096 (1997)

    Article  Google Scholar 

  10. A. Bilenca, S.H. Yun, G.J. Tearney, B.E. Bouma, Numerical study of wavelength-swept semiconductor ring lasers: the role of refractive-index nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications. Opt. Lett. 31, 760–762 (2006)

    Article  ADS  Google Scholar 

  11. S.H. Yun, Mode locking of a wavelength-swept laser. Opt. Lett. 30, 2660–2662 (2005)

    Article  ADS  Google Scholar 

  12. S.H. Yun, C. Boudoux, G.J. Tearney, B.E. Bouma, High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter. Opt. Lett. 28, 1981–1983 (2003)

    Article  ADS  Google Scholar 

  13. R. Huber, M. Wojtkowski, J.G. Fujimoto, J.Y. Jiang, A.E. Cable, Three-dimensional and C-mode OCT imaging with a compact, frequency swept laser source at 1300 nm. Opt. Express 13, 10523–10538 (2005)

    Article  ADS  Google Scholar 

  14. W.Y. Oh, S.H. Yun, G.J. Tearney, B.E. Bouma, 115 kHz tuning repetition rate ultrahigh-speed wavelength-swept semiconductor laser. Opt. Lett. 30, 3159–3161 (2005)

    Article  ADS  Google Scholar 

  15. R. Huber, M. Wojtkowski, J.G. Fujimoto, Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography. Opt. Express 14, 3225–3237 (2006)

    Article  ADS  Google Scholar 

  16. S.T. Sanders, Wavelength-agile fiber laser using group-velocity dispersion of pulsed super-continua and application to broadband absorption spectroscopy. Appl. Phys. B. Lasers Opt. 75, 799–802 (2002)

    Article  ADS  Google Scholar 

  17. S. Moon, D.Y. Kim, Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source. Opt. Express 14, 11575–11584 (2006)

    Article  ADS  Google Scholar 

  18. J.W. Walewski, M.R. Borden, S.T. Sanders, Wavelength-agile laser system based on soliton self-shift and its application for broadband spectroscopy. Appl. Phys. B. Lasers Opt. 79, 937–940 (2004)

    Article  ADS  Google Scholar 

  19. S. Yamashita, M. Asano, Wide and fast wavelength-tunable mode-locked fiber laser based on dispersion tuning. Opt. Express 14, 9299–9306 (2006)

    Article  Google Scholar 

  20. E.C.W. Lee, J.F. de Boer, M. Mujat, H. Lim, S.H. Yun, In vivo optical frequency domain imaging of human retina and choroid. Opt. Express 14, 4403–4411 (2006)

    Article  ADS  Google Scholar 

  21. H. Lim et al., Optical frequency domain imaging with a rapidly swept laser in the 815–870 nm range. Opt. Express 14, 5937–5944 (2006)

    Article  ADS  Google Scholar 

  22. M.E. Klein et al., Rapidly tunable continuous-wave optical parametric oscillator pumped by a fiber laser. Opt. Lett. 28, 920–922 (2003)

    Article  ADS  Google Scholar 

  23. M.A. Choma, K. Hsu, J.A. Izatt, Swept source optical coherence tomography using an all-fiber 1300-nm ring laser source. J. Biomed. Opt. 10, 044009 (2005)

    Article  ADS  Google Scholar 

  24. R. Huber, M. Wojtkowski, K. Taira, J.G. Fujimoto, K. Hsu, Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles. Opt. Express 13, 3513–3528 (2005)

    Article  ADS  Google Scholar 

  25. B. Golubovic, B.E. Bouma, G.J. Tearney, J.G. Fujimoto, Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+: forsterite laser. Opt. Lett. 22, 1704–1706 (1997)

    Article  ADS  Google Scholar 

  26. P.F. Wysocki, M.J.F. Digonnet, B.Y. Kim, Broad-spectrum, wavelength-swept, erbium-doped fiber laser at 1.55 μm. Opt. Lett. 15, 879–881 (1990)

    Article  ADS  Google Scholar 

  27. J.M. Telle, C.L. Tang, New method for electrooptical tuning of tunable lasers. Appl. Phys. Lett. 24, 85–87 (1974)

    Article  ADS  Google Scholar 

  28. J.M. Telle, C.L. Tang, Very rapid tuning of cw dye laser. Appl. Phys. Lett. 26, 572–574 (1975)

    Article  ADS  Google Scholar 

  29. R. Huber, D.C. Adler, J.G. Fujimoto, Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s. Opt. Lett. 31, 2975–2977 (2006)

    Article  ADS  Google Scholar 

  30. J.W. Walewski, S.T. Sanders, High-resolution wavelength-agile laser source based on pulsed super-continua. Appl. Phys. B. Lasers Opt. 79, 415–418 (2004)

    Article  Google Scholar 

  31. S.H. Yun et al., Comprehensive volumetric optical microscopy in vivo. Nat. Med. 12, 1429–1433 (2006)

    Article  Google Scholar 

  32. C. Boudoux et al., Rapid wavelength-swept spectrally encoded confocal microscopy. Opt. Express 13, 8214–8221 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seok Hyun Yun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Yun, S.H., Bouma, B.E. (2015). Wavelength Swept Lasers. In: Drexler, W., Fujimoto, J. (eds) Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-06419-2_21

Download citation

Publish with us

Policies and ethics