Skip to main content

Broad Bandwidth Laser and Nonlinear Optical Sources for OCT

  • Reference work entry
Optical Coherence Tomography

Abstract

OCT achieves very high axial image resolutions independent of focusing conditions because the axial and transverse resolutions are determined independently by different physical mechanisms. This implies that axial OCT resolution can be enhanced using broad bandwidth, low coherence length light sources. The light source not only determines axial OCT resolution via its bandwidth and central emission wavelength but also determines the penetration in the sample (biological tissue), the contrast of the tomogram, and the OCT transverse resolution. A minimum output power with low amplitude noise is also necessary to enable high sensitivity and high-speed – real time – OCT imaging. Hence, it is obvious that the light source is the key technological parameter for an OCT system, and proper choice is imperative. Ultrabroad bandwidth light source technology enables ultrahigh-resolution OCT in the visible and near-infrared wavelength region. Kerr-lens mode-locked solid-state lasers can generate broad bandwidth spectra spanning up to one optical octave. Nonetheless they are restricted to the fluorescence bands of the laser crystal and have a complex architecture making them expensive and preventing widespread industrial use. Spectra far broader than one optical octave can be produced via nonlinear propagation of laser pulses having only moderate energies of a few nJ in microstructured fibers. Complex fibers with one, two, or even no zero-dispersion wavelength can be designed and fabricated to fulfill special requirements as large optical bandwidth and low noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Unterhuber et al., Advances in broad bandwidth light sources for ultrahigh resolution optical coherence tomography. Phys. Med. Biol. 49(7), 1235–1246 (2004)

    Article  Google Scholar 

  2. T.H. Maiman, Stimulated optical radiation in ruby. Nature 182, 493–494 (1960)

    Article  ADS  Google Scholar 

  3. P.F. Moulton, Ti-doped sapphire: tunable solid-state laser. Opt. News 11, 9 (1982)

    Google Scholar 

  4. P. Wagenblast et al., Diode-pumped 10-fs Cr3+:LiCAF laser. Opt. Lett. 28(18), 1713–1715 (2003)

    Article  ADS  Google Scholar 

  5. S. Uemura, K. Torizuka, Development of a diode-pumped Kerr-lens mode-locked Cr:LiSAF laser. IEEE J. Quantum Electron. 39, 68–73 (2003)

    Article  ADS  Google Scholar 

  6. B. Bouma et al., High-resolution optical coherence tomographic imaging using a mode-locked Ti-Al2O3 laser source. Opt. Lett. 20(13), 1486–1488 (1995)

    Article  ADS  Google Scholar 

  7. D.E. Spence et al., 60-fsec pulse generation from a self-modelocked Ti:sapphire laser. Opt. Lett. 16(42), 42–44 (1991)

    Google Scholar 

  8. T. Brabec et al., Kerr lens mode locking. Opt Lett. 17(18), 1292–1294 (1992)

    Google Scholar 

  9. R.L. Fork, O.E. Martinez, J.P. Gordon, Negative dispersion using pairs of prisms. Opt. Lett. 9, 150–152 (1984)

    Article  ADS  Google Scholar 

  10. J. Zhou et al., Pulse evolution is a broad-bandwidth Ti:sapphire laser. Opt. Lett. 19, 1149–1151 (1994)

    Article  ADS  Google Scholar 

  11. R. Szipöcz et al., Chirped multilayer coatings for broadband dispersion control in femtosecond lasers. Opt. Lett. 19(3), 201–203 (1994)

    Article  ADS  Google Scholar 

  12. R. Szipöcz, A. Kohazi-Kis, Theory and design of chirped dielectric laser mirrors. Appl Phys B 65(2), 115–136 (1997)

    ADS  Google Scholar 

  13. B.E. Bouma et al., Self-phase-modulated Kerr-lens mode-locked Cr:forsterite laser source for optical coherence tomography. Opt. Lett. 21(22), 1839–1841 (1996)

    Article  ADS  Google Scholar 

  14. J.K. Ranka, R.S. Windeler, A.J. Stentz, Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25(1), 25–27 (2000)

    Article  ADS  Google Scholar 

  15. T.A. Birks, W.J. Wadsworth, P.S.J. Russel, Generation of an ultra-broad supercontinuum in tapered fibers. Opt. Lett. 25(19), 1415–1417 (2000)

    Article  ADS  Google Scholar 

  16. N.R. Newbury et al., Noise amplification during supercontinuum generation in microstructured fibers. Opt. Lett. 28, 944–945 (2003)

    Article  ADS  Google Scholar 

  17. K.L. Corwin et al., Fundamental amplitude noise limitations to supercontinuum spectra generated in a microstructured fiber. Appl. Phys. B-Lasers Opt. 77(2–3), 269–277 (2003)

    Article  ADS  Google Scholar 

  18. R. Ell et al., Generation of 5-fs pulses and octave-spanning spectra directly from a Ti:sapphire laser. Opt. Lett. 26, 373–375 (2001)

    Article  ADS  Google Scholar 

  19. A. Bartels, H. Kurz, Generation of broadband continuum generation by a Ti:sapphire oscillator with a 1 GHz repetition rate. Opt. Lett. 27, 1839–1841 (2002)

    Article  ADS  Google Scholar 

  20. W. Drexler et al., Ultrahigh-resolution ophthalmic optical coherence tomography. Nat. Med. 7(4), 502–507 (2001)

    Article  Google Scholar 

  21. W. Drexler et al., In vivo ultrahigh-resolution optical coherence tomography. Opt. Lett. 24(17), 1221–1223 (1999)

    Article  ADS  Google Scholar 

  22. U. Morgner et al., Spectroscopic optical coherence tomography. Opt. Lett. 25(2), 111–113 (2000)

    Article  ADS  Google Scholar 

  23. T. Fuji et al., Generation of smooth, ultra-broadband spectra directly from a prism-less Ti: sapphire laser. Appl. Phys. B-Lasers Opt. 77(1), 125–128 (2003)

    Article  Google Scholar 

  24. D.I. Babic, S.W. Corzine, Analytic expression for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors. IEEE J. Quantum Electron. 28, 514–524 (1992)

    Article  ADS  Google Scholar 

  25. P. Laporta, V. Magni, Dispersive effects in the reflection of femtosecond optical pulses from broadband dielectric mirrors. Appl. Opt. 24, 2014–2020 (1985)

    Article  ADS  Google Scholar 

  26. F.X. Kärtner et al., Design and fabrication of double-chirped mirrors. Opt. Lett. 22(11), 831–833 (1997)

    Article  ADS  Google Scholar 

  27. G. Tempea et al., Tilted-front-interface chirped mirrors. J. Opt. Soc. Am. B 18, 1747–1750 (2001)

    Article  ADS  Google Scholar 

  28. U. Morgner et al., Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser. Opt. Lett. 24(6), 411–413 (1999)

    Article  ADS  Google Scholar 

  29. A. Stingl et al., Sub-10-fs mirror-dispersion-controlled Ti:sapphire laser. Opt. Lett. 20, 602–604 (1995)

    Article  ADS  Google Scholar 

  30. U. Morgner et al., Nonlinear optics with phase-controlled pulses in the sub-two-cycle regime. Phys. Rev. Lett. 86(24), 5462–5465 (2001)

    Article  ADS  Google Scholar 

  31. T.M. Ramond et al., Phase-coherent link from optical to microwave frequencies by means of the broadband continuum from a 1-GHz Ti:sapphire femtosecond oscillator. Opt. Lett. 27(20), 1842–1844 (2002)

    Article  ADS  Google Scholar 

  32. T.R. Schibli et al., Continuum generation in a prism-less Ti:sapphire laser, ed. by R.D. Miller, M.M. Murnsne, N.F. Scherer, A.M. Weinere. Ultrafast Phenomena XIII. Chem. Phys. pp. 131–133 (2002)

    Google Scholar 

  33. A. Unterhuber et al., Compact, low-cost Ti: Al2O3 laser for in vivo ultrahigh-resolution optical coherence tomography. Opt. Lett. 28(11), 905–907 (2003)

    Article  ADS  Google Scholar 

  34. A.M. Kowalevicz et al., Ultralow-threshold Kerr-lens mode-locked Ti:Al2O3 laser. Opt. Lett. 27, 2037–2039 (2002)

    Article  ADS  Google Scholar 

  35. P.C. Wagenblast et al., Generation of sub-10-fs pulses from a Kerr-lens mode-locked Cr 3+:LiCAF laser oscillator by use of third-order dispersion-compensating double-chirped mirrors. Opt. Lett. 27, 1726–1728 (2002)

    Article  ADS  Google Scholar 

  36. P.C. Wagenblast et al., Ultrahigh-resolution optical coherence tomography with a diode-pumped broadband Cr3+: LiCAF laser. Opt. Express 12(14), 3257–3263 (2004)

    Article  ADS  Google Scholar 

  37. J. Herrmann, Theory of Kerr-lens mode-locking: role of self-focusing and radially varying gain. J. Opt. Soc. Am. B 11, 498–512 (1994)

    Article  ADS  Google Scholar 

  38. C. Chudoba et al., All-solid-state Cr:forsterite laser generating 14-fs pulses at 1.3 μm. Opt. Lett. 26(5), 292–294 (2001)

    Article  ADS  Google Scholar 

  39. R.P. Prasankumar et al., Self-starting mode locking in a Cr:forsterite laser by use of non-epitaxially-grown semiconductor-doped silica films. Opt. Lett. 27(17), 1564–1566 (2002)

    Article  ADS  Google Scholar 

  40. P.R. Herz et al., Ultrahigh resolution optical biopsy with endoscopic optical coherence tomography. Opt. Express 12(15), 3532–3542 (2004)

    Article  ADS  Google Scholar 

  41. Y. Chen et al., Ultrahigh resolution optical coherence tomography of Barrett’s esophagus: preliminary descriptive clinical study correlating images with histology. Endoscopy 39(7), 599–605 (2007)

    Article  Google Scholar 

  42. D.J. Ripin et al., Generation of 20-fs pulses by a prismless Cr4+:YAG laser. Opt. Lett. 27(1), 61–63 (2002)

    Article  ADS  Google Scholar 

  43. P. Kaiser, E.A.J. Marcatili, S.E. Miller, A new optical fiber. Bell. Sys. Tech. J. 52, 265–269 (1973)

    Article  Google Scholar 

  44. S.L. Chin et al., The white light supercontinuum is indeed an ultrafast white light laser. Jpn. J. Appl. Phys. 38(2), 126–128 (1999)

    Article  ADS  Google Scholar 

  45. Y.M. Wang et al., Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber. Opt. Lett. 28(3), 182–184 (2003)

    Article  ADS  Google Scholar 

  46. D.L. Marks et al., Study of an ultrahigh-numerical-aperture fiber continuum generation source for optical coherence tomography. Opt. Lett. 27(22), 2010–2012 (2002)

    Article  ADS  Google Scholar 

  47. B. Považay et al., Submicrometer axial resolution optical coherence tomography. Opt. Lett. 27(20), 1800–1802 (2002)

    Article  ADS  Google Scholar 

  48. S. Bourquin et al., Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd:glass laser and nonlinear fiber. Opt. Express 11(24), 3290–3297 (2003)

    Article  ADS  Google Scholar 

  49. K. Tamura et al., Broadband light generation by femtosecond pulse amplification with stimulated Raman scattering in a high power erbium-doped fiber amplifier. Opt. Lett. 20, 1631–1633 (1995)

    Article  ADS  Google Scholar 

  50. I. Hartl et al., Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber. Opt. Lett. 26(9), 608–610 (2001)

    Article  ADS  Google Scholar 

  51. A.L. Gaeta, Nonlinear propagation and continuum generation in microstructured optical fibers. Opt. Lett. 27, 924–926 (2002)

    Article  ADS  Google Scholar 

  52. X. Gu et al., Frequency resolved optical gating and single shot spectral measurements reveal fine structure in microstructure-fiber-continuum. Opt. Lett. 27, 1174–1176 (2002)

    Article  ADS  Google Scholar 

  53. Y.M. Wang et al., Low-noise broadband light generation from optical fibers for use in high-resolution optical coherence tomography. J. Opt. Soc. Am. A-Opt. Imag. Sci. Vis. 22(8), 1492–1499 (2005)

    Article  ADS  Google Scholar 

  54. H. Lim et al., Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1 mu m. Opt. Lett. 30(10), 1171–1173 (2005)

    Article  ADS  Google Scholar 

  55. G. Humbert et al., Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre. Opt. Express 14(4), 1596–1603 (2006)

    Article  ADS  Google Scholar 

  56. H. Wang, A.M. Rollins, Optimization of dual-band continuum light source for ultrahigh-resolution optical coherence tomography. Appl. Opt. 46(10), 1787–1794 (2007)

    Article  ADS  Google Scholar 

  57. A.D. Aguirre et al., Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm. Opt. Express 14(3), 1145–1160 (2006)

    Article  ADS  Google Scholar 

  58. F. Spöler et al., Simultaneous dual-band ultra-high resolution optical coherence tomography. Opt. Lett. 15(17), 10832–10841 (2007)

    Google Scholar 

  59. H. Wang, C.P. Fleming, A.M. Rollins, Ultrahigh-resolution optical coherence tomography at 1.15 15 μm mu;m using photonic crystal fiber with no zero-dispersion wavelengths. Opt. Express 15(6), 3085–3092 (2007)

    Article  ADS  Google Scholar 

  60. P.L. Hsiung et al., Optical coherence tomography using a continuous-wave, high-power, Raman continuum light source. Opt. Express 12(22), 5287–5295 (2004)

    Article  ADS  Google Scholar 

  61. K. Bizheva et al., Optophysiology: depth-resolved probing of retinal physiology with functional ultrahigh-resolution optical coherence tomography. Proc. Natl. Acad. Sci. U. S. A. 103(13), 5066–5071 (2006)

    Article  ADS  Google Scholar 

  62. N. Nishizawa et al., Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 microm. Opt. Lett. 29(24), 2846–2848 (2004)

    Article  ADS  Google Scholar 

  63. A. Müller, O.B. Jensen, A. Unterhuber, T. Le, A. Stingl, K-H. Hasler, B. Sumpf, G. Erbert, P.E. Andersen, P.M. Petersen, Frequency-doubled DBR-tapered diode laser for direct pumping of Ti:sapphire lasers generating sub-20 fs pulses. In: Optics Express. 19(13), 12156–12163 (2011)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank B. Herrmann, B. Hofer, and J.E. Morgan from the School of Optometry and Vision Science, Cardiff University; A.F. Fercher, R. Leitgeb, L. Schachinger, and H. Sattmann from the Centre of Biomedical Engineering and Physics, Medical University of Vienna, Austria; K. Bizheva from the University of Waterloo, Canada; and A. Stingl, T. Le, G. Tempea, and V. Yakovlew from Femtolasers Produktions GmbH, Vienna, Austria.

The authors would also like to thank Desmond Adler, Stephan Bourquin, Iwona Gorczynska, Ingmar Hartl, Pei-Lin Hsiung, Robert Huber, Tony H. Ko, Jonathan Liu, Norihiko Nishizawa, Vivek J. Srinivasan, and Maciej Wojtkowski from the Department of Electrical Engineering and Computer Science at the Massachusetts Institute of Technology; James R. Taylor, Christiano J.S. de Matos, and Sergei V. Popov from the Imperial College; Valentin P. Gapontsev form IPG Photonics Corporation; Daniel Kopf, Wolfgang Seitz, and Max Lederer from High Q Laser Production, GmbH; and Vladimir Shidlovski and Sergei Yakubovich from Superlum Diodes, Ltd.

Financial support is acknowledged to Cardiff University, FP6-IST-NMP-2 STREPT (017128), the Christian Doppler Society, NP Photonics (Arizona, USA), FEMTOLASERS GmbH (Vienna, Austria), Carl Zeiss Meditec Inc. (Dublin, CA, USA), Maxon Computer GmbH (Friedrichsdorf, Germany); FWF P14218-PSY, FWF Y 159, CRAF-1999-70549, Christian Doppler Gesellschaft, FEMTOLASERS Produktions GmbH, Carl Zeiss Meditec Inc. This research was also supported at M.I.T. by the Air Force Office of Scientific Research and Medical Free Electron Laser Program FA9550-040-1-0046 and FA9550-040-1-0011, National Institutes of Health R01-EY011289-21, and R01-CA75289-10, and National Science Foundation ECS-0501478 and BES-0522845.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angelika Unterhuber .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Unterhuber, A. et al. (2015). Broad Bandwidth Laser and Nonlinear Optical Sources for OCT. In: Drexler, W., Fujimoto, J. (eds) Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-06419-2_20

Download citation

Publish with us

Policies and ethics