Skip to main content

SLEDs and Swept Source Laser Technology for OCT

  • Reference work entry
Optical Coherence Tomography
  • 10k Accesses

Abstract

EXALOS offers broadband and high-power superluminescent light-emitting diodes (SLEDs) and high-speed wavelength-swept lasers, covering various visible and near-infrared wavelength regions (390–1,700 nm). These diverse wavelengths are realized in different semiconductor material systems such as GaN, GaAs, or InP. Those light sources are used in various fields such as navigation, optical coherence tomography (OCT), metrology, sensing, and microscopy. Detailed discussions on SLED characteristics and key swept-source OCT system design parameters are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.B. Wootten, J. Tan, Y.J. Chien, J.T. Olesberg, J.P. Prineas, “Broadband 2.4 μm superluminescent GaInAsSb/AlGaAsSb quantum well diodes for optical sensing of biomolecules”, Semiconductor Science and Technology, 29(11) (2014)

    Google Scholar 

  2. L. An, P. Li, G. Lan, D. Malchow, R.K. Wang, High-resolution 1050 nm spectral domain retinal optical coherence tomography at 120 kHz A-scan rate with 6.1 mm imaging depth. Biomed. Opt. Express 4(2), 245–259 (2013)

    Article  Google Scholar 

  3. J.M. Schmitt, Optical coherence tomography (OCT): a review. IEEE J. Sel. Top. Quantum. Electron. 5(4), 1205–1215 (1999)

    Article  Google Scholar 

  4. E. Feltin, A. Castiglia, G. Cosendey, L. Sulmoni, J.-F. Carlin, N. Grandjean, M. Rossetti, J. Dorsaz, V. Laino, M. Duelk, C. Velez, Broadband blue superluminescent light-emitting diodes based on GaN. Appl. Phys. Lett. 95(8) (2009)

    Google Scholar 

  5. S. Maliszewska, M. Wojtkowski, Broadband blue light for Optical Coherence Microscopy. Photonics. Lett. Pol. 3(4), 138–140 (2011)

    Google Scholar 

  6. M. Rossetti, M. Duelk, C. Velez, A. Castiglia, J.-M. Lamy, L. Lahourcade, D. Martin, N. Grandjean, The reliability of GaN superluminescent diodes and laser diodes, 10th International Conference on Nitride Semiconductors ICNS. Edinburgh, UK (2013)

    Google Scholar 

  7. EXALOS SLED modules (EXS), http://www.exalos.com/sled-modules/

  8. Accessible emission limits (AEL) according to the international laser safety standard IEC-60825-1, edition 2.0 (2007.03) and ANSI Z136, Equipment classification and requirements, Table 4. p. 87, with Corrigendum 1 (2008–08)

    Google Scholar 

  9. EXALOS broadband light sources (EBS), http://www.exalos.com/broadband-light-sources/

  10. M. Duelk, V. Laino, P. Navaretti, R. Rezzonico, C. Armistead, C. Vélez, Isolator-free 840-nm broadband SLEDs for high-resolution OCT, Opt. Coherence Tomogr. Coherence Domain Opt. Methods BioMed. XIII, Proceedings SPIE 7168 (2009)

    Google Scholar 

  11. S.R. Chinn, E.A. Swanson, J.G. Fujimoto, Optical coherence tomography using a frequency tunable optical source. Opt. Lett. 22(5), 340–342 (1997)

    Article  ADS  Google Scholar 

  12. M.A. Choma, M.V. Sarunic, C.H. Yang, J.A. Izatt, Sensitivity advantage of swept source and Fourier domain optical coherence tomography. Opt. Express 11(18), 2183–2189 (2003)

    Article  ADS  Google Scholar 

  13. S.H. Yun, G.J. Tearney, J.F. de Boer, N. Iftimia, B.E. Bouma, High-speed optical frequency-domain imaging. Opt. Express 11(22), 2953–2963 (2003)

    Article  ADS  Google Scholar 

  14. L.A. Kranendonk, X. An, A.W. Caswell, R.E. Herold, S.T. Sanders, R. Huber, J.G. Fujimoto, Y. Okura, Y. Urata, High speed engine gas thermometry by Fourier-domain mode-locked laser absorption spectroscopy. Opt. Express 15(23), 15115–15128 (2007)

    Article  ADS  Google Scholar 

  15. K. Hsu, T. Haber, J. Mock, J. Volcy, T.W. Graver, High-speed swept-laser interrogation system for vibration monitoring. Struct. Health Monit. 2003, DEStech Publications, pp. 1043–1050 (2003)

    Google Scholar 

  16. EXALOS swept sources (ESS), http://www.exalos.com/swept-sources/

  17. E.A. Swanson, D. Huang, M.R. Hee, J.G. Fujimoto, C.P. Lin, C.A. Puliafito, High-speed optical coherence domain reflectometry. Opt. Lett. 17(2), 151–153 (1992)

    Article  ADS  Google Scholar 

  18. R. Leitgeb, C.K. Hitzenberger, A.F. Fercher, Performance of Fourier domain vs. time domain optical coherence tomography. Opt. Express. 11(8), 889–894 (2003)

    Google Scholar 

  19. J.F. de Boer, B. Cense, B.H. Park, M.C. Pierce, G.J. Tearney, B.E. Bouma, Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Opt. Lett. 28(21), 2067–2069 (2003)

    Google Scholar 

  20. A.E. Desjardins, B.J. Vakoc, M. Suter, S.-H. Yun, G.J. Tearney, B.E. Bouma, Real-time FPGA processing for high-speed optical frequency domain imaging. IEEE Trans. Med. Imaging 28(9), 1468–1472 (2009)

    Article  Google Scholar 

  21. B.R. Biedermann, W. Wieser, C.M. Eigenwillig, T. Klein, R. Huber, Dispersion, coherence and noise of Fourier domain mode locked lasers. Opt. Express 17(12), 9947–9961 (2009)

    Article  ADS  Google Scholar 

  22. B. George, D. Derickson, High-speed concatenation of frequency ramps using sampled grating distributed Bragg reflector laser diode sources for OCT resolution enhancement. Opt. Coherence Tomogr. Coherence Domain Opt. Methods BioMed. XIV, Proceedings SPIE 7554 (2010)

    Google Scholar 

  23. V. Jayaraman, J. Jiang, B. Potsaid, G. Cole, J.G. Fujimoto, A.E. Cable, Design and performance of broadly tunable, narrow line-width, high repetition rate 1310nm VCSELs for swept source optical coherence tomography. Vertical-Cavity Surface-Emitting Lasers XVI, Proceedings SPIE 8276 (2012)

    Google Scholar 

  24. T. von Niederhäusern, C. Meier, M. Duelk, P. Vorreau, Instantaneous coherence length measurement of a swept laser source using a Mach-Zehnder interferometer, Opt. Coherence Tomogr. Coherence Domain Opt. Methods BioMed. XV, Proceedings SPIE 7889 (2011)

    Google Scholar 

  25. A. Bilenca, S.H. Yun, G.J. Tearney, B.E. Bouma, Numerical study of wavelength-swept semiconductor ring lasers: the role of refractive-index nonlinearities in semiconductor optical amplifiers and implications for biomedical imaging applications. Opt. Lett. 31(6), 760–762 (2006)

    Article  ADS  Google Scholar 

  26. B.H. Park, M.C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G.J. Tearney, B.E. Bouma, J.F. de Boer, Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μm. Opt. Express 13(11), 3931–3944 (2005)

    Article  ADS  Google Scholar 

  27. S.M.R. Motaghiannezam, D. Koos, S.E. Fraser, Differential phase-contrast, swept-source optical coherence tomography at 1060 nm for in vivo human retinal and choroidal vasculature visualization. J. Biomed. Opt. 17(2), 026011 (2012)

    Article  ADS  Google Scholar 

  28. Y. Chen, D.M. de Bruin, C. Kerbage, J.F. de Boer, Spectrally balanced detection for optical frequency domain imaging. Opt. Express 15(25), 16390–16399 (2007)

    Article  ADS  Google Scholar 

  29. EXALOS balanced receivers (EBR). http://www.exalos.com/balanced-receivers/

  30. Z. Lu, D.K. Kasaragod, S.J. Matcher, Performance comparison between 8- and 14-bit-depth imaging in polarization-sensitive swept-source optical coherence tomography. Biomed. Opt. Express 2(4), 794–804 (2011)

    Article  Google Scholar 

  31. W. Kester, Taking the mystery out of the infamous formula ‘SNR = 6.02N + 1.76dB’ and why you should care. Analog Devices, Tutorial MT-001

    Google Scholar 

  32. W. Kester, Understand SINAD, ENOB, SNR, THD, THD + N, and SFDR so you don’t get lost in the noise floor. Analog Devices, Tutorial MT-003

    Google Scholar 

  33. J. Xi, L. Huo, J. Li, X. Li, Generic real-time uniform K-space sampling method for high-speed swept-source optical coherence tomography. Opt. Express 18(9), 9511–9517 (2010)

    Article  ADS  Google Scholar 

  34. S. Vergnole, D. Lévesque, G. Lamouche, Experimental validation of an optimized signal processing method to handle non-linearity in swept-source optical coherence tomography. Opt. Express 18(10), 10446–10461 (2010)

    Article  ADS  Google Scholar 

  35. K.K.H. Chan, S. Tang, High-speed spectral domain optical coherence tomography using non-uniform fast Fourier transform. Biomed. Opt. Express 1(5), 1309–1319 (2010)

    Article  Google Scholar 

  36. V. Bandi, J. Goette, M. Jacomet, T. von Niederhäusern, A.H. Bachmann, M. Duelk, FPGA-based real-time swept-source OCT systems for B-scan live-streaming or volumetric imaging. Opt. Coherence Tomogr. Coherence Domain Opt. Methods BioMed. XVII, Proceedings SPIE 8571 (2013)

    Google Scholar 

  37. EXALOS OCT engine (EOE). http://www.exalos.com/oct-engine/

Download references

Acknowledgment

The above-mentioned results are an outcome of a dedicated team of individuals working at EXALOS, namely, S. Gloor, A.H. Bachmann, M. Epitaux, T. von Niederhäusern, P. Vorreau, N. Matuschek, M. Rossetti, A. Hold, K. Brossi, and many others as well.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Duelk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Duelk, M., Hsu, K. (2015). SLEDs and Swept Source Laser Technology for OCT. In: Drexler, W., Fujimoto, J. (eds) Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-06419-2_19

Download citation

Publish with us

Policies and ethics