Skip to main content

Linear OCT Systems

  • Reference work entry
Optical Coherence Tomography

Abstract

Linear OCT (L-OCT) employs a parallel detection scheme to measure the interference pattern which is formed by the superposition of sample and reference light. L-OCT is one of four basic measurement implementations for OCT. It operates in the time domain like traditional TD-OCT systems but uses a parallel detection scheme by utilizing an image sensor. Therefore, the detection scheme has similarities with FD-OCT. L-OCT shares the lack of the twin-image and autocorrelation artefacts with FD-OCT and the increased noise with time-domain OCT. No moving parts and a simple optical design make L-OCT attractive for optically stable low-cost instruments. One of the main draw-backs is the large number of detector elements, which are needed to achieve a clinically relevant depth range. Gratings offer an elegant solution to reduce the fringe frequency of the interference pattern without influencing the image information. This chapter discusses, theory, implementation and performance of linear OCT systems, together with possible applications and extension, such as non-continuous depth range or line-field versions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. D. Huang, E. Swanson, C. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography, Science 254, 1178–1181 (1991)

    Article  ADS  Google Scholar 

  2. A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. El-Zaiat, Measurement of intraocular distances by backscattering spectral interferometry, Opt. Commun. 117, 43–48 (1995)

    Article  ADS  Google Scholar 

  3. G. Häusler, M.W. Lindner, “Coherence radar” and “Spectral radar”- new tools for dermatological diagnosis, J. Biomed, Opt. 3, 21–31 (1998)

    Google Scholar 

  4. S.H. Yun, G.J. Tearney, J.F.D. Boer, N. Iftimia, B.E. Bouma, High-speed optical frequencydomain imaging, Opt. Express 11, 2953–2963 (2003)

    Article  ADS  Google Scholar 

  5. B.E. Bouma, G.J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker, New York, 2002)

    Google Scholar 

  6. A.F. Fercher, W. Drexler, C.K. Hitzenberger, T. Lasser, Optical coherence tomography–principles and applications, Rep. Prog. Phys. 66, 239–303 (2003)

    Article  ADS  Google Scholar 

  7. P. Koch, G. Hüttmann, H. Schleiermacher, J. Eichholz, E. Koch, Linear optical coherence tomography system with a downconverted fringe pattern, Opt. Lett. 29, 1644–1646 (2004)

    Article  ADS  Google Scholar 

  8. A.M. Weiner, D.E. Leaird, J.S. Patel, J.R. Wullert, Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator, Opt. Lett. 16, 326 (1990)

    Article  ADS  Google Scholar 

  9. K.F. Kwong, D. Yankelevich, K.C. Chu, J.P. Heritage, A. Dienes, 400-Hz mechanical scanning optical delay line, Opt. Lett. 18, 558 (1993)

    Article  ADS  Google Scholar 

  10. A. Rollins, S. Yazdanfar, M. Kulkarni, R. Ung-Arunyawee, J. Izatt, In vivo video rate optical coherence tomography, Opt. Express 3, 219–229 (1998)

    Article  ADS  Google Scholar 

  11. G.J. Tearney, B.E. Bouma, J.G. Fujimoto, High-speed phase- and group-delay scanning with a grating-based phase control delay line, Opt. Lett. 22, 1811–1813 (1997)

    Article  ADS  Google Scholar 

  12. I. Zeylikovich, R.R. Alfano, Ultrafast dark-field interferometric microscopic reflectometry, Opt. Lett. 21, 1682–1684 (1996)

    Article  ADS  Google Scholar 

  13. P. Koch, V. Hellemanns, G. Hüttmann, Linear OCT System with extended measurement range, Opt. Lett. 31, 2882–2884 (2006)

    Article  ADS  Google Scholar 

  14. I. Zeylikovich, A. Gilerson, R.R. Alfano, Nonmechanical grating-generated scanning coherence microscopy, Opt. Lett. 23, 1797–1799 (1998)

    Article  ADS  Google Scholar 

  15. Y. Watanabe, F. Sajima, T. Itagaki, K. Watanabe, Y. Shuto, High-speed linear detection time domain optical coherence tomography with reflective grating-generated spatial reference delay, Appl. Opt. 48, 3401–3406 (2009)

    Article  ADS  Google Scholar 

  16. C. Hauger, M. Worz, T. Hellmuth, Interferometer for optical coherence tomography, Appl. Opt. 42, 3896–3902 (2003)

    Article  ADS  Google Scholar 

  17. J. R. Janesick, Scientific Charge-Coupled Devices (SPIE, Bellingham, Washington, USA, 2001)

    Google Scholar 

  18. S. Yun, G. Tearney, B. Bouma, B. Park, B. J. d, High-speed spectral-domain optical coherence tomography at 1.3 μm wavelength, Opt. Express 11, 3598–3604 (2003)

    Article  ADS  Google Scholar 

  19. M. Wosnitza, Optische Kohärenztomographie mit MOS-Zeilensensoren, (University of Applied Science Lübeck, Lübeck 2000)

    Google Scholar 

  20. J. Welzel, C. Reinhardt, E. Lankenau, C. Winter, H.H. Wolff, Changes in function and morphology of normal human skin: evaluation using optical coherence tomography, Br. J. Dermatol. 150, 220–225 (2004)

    Article  Google Scholar 

  21. J. Welzel, M. Bruhns, H.H. Wolff, Optical coherence tomography in contact dermatitis and psoriasis, Arch. Dermatol. Res. 295, 50–55 (2003)

    Article  Google Scholar 

  22. P. Koch, D. Boller, E. Koch, J. Welzel, G. Hüttmann, Ultrahigh-resolution FDOCT system for dermatology, in Coherence Domain Optical Methods and Optical Coherence Tomography in Biomedicine IX, ed. by V.V. Tuchin, J.A. Izatt, J.G. Fujimoto (SPIE, San Jose, 2005), pp. 24–30

    Google Scholar 

  23. J.A. Izatt, M.A. Choma, Theorie of Optical Coherence Tomography, in Optical Coherence Tomography, ed. by W. Drexler, J. Fujimoto (Springer, Berlin/Heidelberg/New York, 2008), pp. 47–72

    Chapter  Google Scholar 

  24. A. Gilerson, I. Zeylikovich, R.R. Alfano, High-speed grating-generated electronic coherence microscopy of biological tissue without moving parts, V.V.T.J.A. Izatt (ed.), (SPIE, 1999), pp. 213–215

    Google Scholar 

  25. Y. Watanabe, K. Yamada, M. Sato, Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography, Opt. Express 14, 5201–5209 (2006)

    Article  ADS  Google Scholar 

  26. Y. Watanabe, Y. Takasugi, K. Yamada, M. Sato, Axial-lateral parallel time domain OCT with optical zoom lens and high order diffracted lights for variable imaging range, Opt. Express 15, 5208–5217 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gereon Hüttmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Hüttmann, G., Koch, P., Birngruber, R. (2015). Linear OCT Systems. In: Drexler, W., Fujimoto, J. (eds) Optical Coherence Tomography. Springer, Cham. https://doi.org/10.1007/978-3-319-06419-2_13

Download citation

Publish with us

Policies and ethics