Skip to main content

Gas and Liquid Doping of Porous Silicon

  • Reference work entry
  • First Online:
Handbook of Porous Silicon

Abstract

There is now both experimental and theoretical data relating to conductivity changes in porous silicon and other silicon nanostructures arising from the adsorption of specific molecules. The phenomenon is reviewed with emphasis on the potential mechanisms involved and its exploitation with regard sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson RC, Muller RS, Tobias CW (1990) Investigations of porous silicon for vapor sensing. Sens Actuators A 21–23:835

    Google Scholar 

  • Beale MIJ, Cox TI, Canham LT, Brumhead D (1992) The depth dependence of photoluminescence and electrolytic electroluminescence in porous silicon films. MRS Proc 283:377

    Article  Google Scholar 

  • Björk MT, Schmid H, Knoch J, Riel H, Riess W (2009) Donor deactivation in silicon nanostructures. Nat Nanotechnol 4:103

    Article  Google Scholar 

  • Boarino L, Geobaldo F, Borini S, Rossi AM, Rivolo P, Rocchia M, Garrone E, Amato G (2001) Local environment of Boron impurities in porous silicon and their interaction with NO2 molecules. Phys Rev B 64:205308

    Article  Google Scholar 

  • Bruno M, Palummo M, Marini A, Del Sole R, Ossicini S (2007) From Si nanowires to porous silicon: the role of excitonic effects. Phys Rev Lett 98:036807

    Article  Google Scholar 

  • Burkhardt PJ, Poponiak MR (1977) Porous silicon dioxide moisture sensor and method for manufacture of a moisture sensor. US Patent 4,057,823

    Google Scholar 

  • Canham LT (1986) Room temperature photoluminescence from etched silicon surfaces: the effects of chemical pretreatments and gaseous ambients. J Phys Chem Solids 47:363

    Article  Google Scholar 

  • Chiesa M, Amato G, Boarino L, Garrone E, Geobaldo F, Giamello E (2003) Reversible insulator-to-metal transition in p+-type mesoporous silicon induced by the adsorption of ammonia. Angew Chem Int Edit 42:5032

    Article  Google Scholar 

  • Chiesa M, Amato G, Boarino L, Garrone E, Geobaldo F, Giamello E (2005) ESR study of conduction electrons in B-doped porous silicon generated by the adsorption of Lewis bases. J Electrochem Soc 152:G329

    Article  Google Scholar 

  • Cultrera A, Boarino L, Amato G, Bordiga S, Mercuri F, Cartoixà X, Rurali R (2013) Molecular doping and gas sensing in Si nanowires: from charge injection to reduced dielectric mismatch. J Appl Phys 114:204302

    Article  Google Scholar 

  • Diarra M, Niquet Y-M, Delerue C, Allan G (2007) Ionization energy of donor and acceptor impurities in semiconductor nanowires: importance of dielectric confinement. Phys Rev B 75:045301

    Article  Google Scholar 

  • Foucaran A, Pascalk-Delannoy F, Giani A, Sackda A, Comette P, Boyer A (1997) Porous silicon layers used for gas sensor applications. Thin Solid Films 297:317

    Article  Google Scholar 

  • Fukata N, Ishida S, Yokono S, Takiguchi R, Chen J, Sekiguchi T, Murakami K (2011) Segregation behaviors and radial distribution of dopant atoms in silicon nanowires. Nano Lett 11:651

    Article  Google Scholar 

  • Gaburro Z, Oton CJ, Pavesi L, Pancheri L (2004) Opposite effects of NO2 on electrical injection in porous silicon gas sensors. Appl Phys Lett 84:4388

    Article  Google Scholar 

  • Garrone E, Borini S, Rivolo P, Boarino L, Geobaldo F, Amato G (2003) Porous silicon in NO2: a chemisorption mechanism for enhanced electrical conductivity. Phys Status Solidi A 197(103)

    Google Scholar 

  • Garrone E, Geobaldo F, Rivolo P, Amato G, Boarino L, Chiesa M, Giamello E, Gobetto R, Ugliengo P, Viale A (2005) A nanostructured porous silicon near insulator becomes either a p- or an n-type semiconductor upon gas adsorption. Adv Mater 17:528

    Article  Google Scholar 

  • Gelloz B, Bsiesy A, Gaspard F, Muller F (1996) Conduction in porous silicon contacted by a liquid phase. Thin Solid Films 276:175

    Article  Google Scholar 

  • Gelloz B, Bsiesy A, Koshida N (2000) Conduction and luminescent properties of wet porous silicon. J Porous Mater 7:103

    Article  Google Scholar 

  • Geobaldo F, Onida B, Rivolo P, Borini S, Boarino L, Rossi A, Amato G, Garrone E (2001) IR detection of NO2 using p+ porous silicon as a high sensitivity sensor. Chem Commun 21:2196

    Article  Google Scholar 

  • Geobaldo F, Rivolo P, Rocchia M, Rossi AM, Garrone E (2003) Free carriers reactivation in mesoporous p+-type silicon by ammonia condensation: an FTIR study. Phys Status Solidi A 197(458)

    Google Scholar 

  • Geobaldo F, Rivolo P, Salvador GP, Amato G, Boarino L, Garrone E (2004) Free carriers reactivation on p+-mesoporous silicon through ammonia adsorption: a FTIR study. Sens Actuators B 100:205

    Article  Google Scholar 

  • Harper J, Sailor M (1996) Detection of nitric oxide and nitrogen dioxide with photoluminescent porous silicon. Anal Chem 68:3713

    Article  Google Scholar 

  • Konstantinova E, Pavlikov A, Vorontsov A, Efimova A, Timoshenko V, Kashkarov P (2009) IR and EPR study of ammonia adsorption effect on silicon nanocrystals. Phys Status Solidi A 206:1330

    Article  Google Scholar 

  • Miranda Á, Cartoixà X, Canadell E, Rurali R (2012) NH3 molecular doping of silicon nanowires grown along the [112], [110], [001] and [111] orientations. Nanoscale Res Lett 7:308

    Article  Google Scholar 

  • Miranda-Durán Á, Cartoixà X, Cruz Irisson M, Rurali R (2010) Molecular doping and subsurface dopant reactivation in Si nanowires. Nano Lett 10:3590

    Article  Google Scholar 

  • Motohashi A, Ruike M, Kawakami M, Aoyagi H, Kinoshita A, Satou A (1996) Identification of water molecules in low humidity and possibility of quantitative gas analysis using porous silicon gas sensor. Jpn J Appl Phys 35:4253

    Article  Google Scholar 

  • Niquet YM, Genovese L, Delerue C, Deutsch T (2010) Ab initio calculation of the binding energy of impurities in semiconductors: application to Si nanowires. Phys Rev B 81:161301(R)

    Article  Google Scholar 

  • O’Halloran GM, Groeneweg J, Sarro PM, French PJ (1999) Proceedings of Eurosensors XIII, 12–15 Sept 1999, The Hague, p 55

    Google Scholar 

  • Rurali R (2010) Colloquium: structural, electronic, and transport properties of silicon nanowires. Rev Mod Phys 82:427

    Article  Google Scholar 

  • Schechter I, Ben-Chorin M, Kux A (1995) Gas sensing properties of porous silicon. Anal Chem 67:3727

    Article  Google Scholar 

  • Timoshenko VY, Dittrich T, Lysenko V, Lisachenko MG, Koch F (2001) Free charge carriers in mesoporous silicon. Phys Rev B 64:085314

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Rurali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Rurali, R. (2014). Gas and Liquid Doping of Porous Silicon. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-05744-6_66

Download citation

Publish with us

Policies and ethics