Skip to main content

Biocompatibility of Porous Silicon

  • Reference work entry
  • First Online:
Book cover Handbook of Porous Silicon

Abstract

The biocompatibility of porous silicon is critical to its potential biomedical uses, both in vivo within the human body for therapy and diagnostics, and in vitro for biosensing and biofiltration. Published data from cell culture and in vivo studies are reviewed, and a number of emerging applications for bioactive or biodegradable silicon are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 399.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ainslie KM, Tao SL, Popat KC, Desai TA (2008) In vitro immunogenicity of silicon-based micro- and nanostructured surfaces. ACS Nano 2(5):1076–1084

    Article  Google Scholar 

  • Allongue P, Costa-Kieling V, Gerischer H (1993) Etching of silicon in NaOH solutions. J Electrochem Soc 140(4):1018–1026

    Article  Google Scholar 

  • Anderson SHC, Elliot H, Wallis DJ, Canham LT, Powell JJ (2003) Dissolution of different forms of partially porous silicon wafers under simulated physiological conditions. Phys Status Solidi A 197(2):331–335

    Article  Google Scholar 

  • Anglin EJ, Cheng L, Freeman WR, Sailor MJ (2008) Porous silicon in drug delivery devices and materials. Adv Drug Deliver Rev 60(11):1266–1277

    Article  Google Scholar 

  • Bayliss SC, Harris P, Buckberry LD, Rousseau C (1997) Phosphate and cell growth on nanostructured semiconductors. J Mater Sci Lett 16:737–740

    Article  Google Scholar 

  • Bayliss SC, Heald R, Fletcher DI, Buckberry LD (1999) The culture of mammalian cells on nanostructured silicon. Adv Mater (Weinheim, Ger) 11(4):318–321

    Article  Google Scholar 

  • Belyakov L, Goryachev D, Sreseli O (2007) Role of singlet oxygen in formation of nanoporous silicon. Semiconductors 41(12):1453–1456

    Article  Google Scholar 

  • Ben-Tabou de Leon S, Sa'ar A, Oren R, Spira ME, Yitzchaik S (2004) Neurons culturing and biophotonic sensing using porous silicon. Appl Phys Lett 84(22):4361–4363

    Article  Google Scholar 

  • Bimbo LM, Sarparanta M, Santos H l A, Airaksinen AJ, Mäkilä E, Laaksonen T, Peltonen L, Lehto VP, Hirvonen J, Salonen J (2010) Biocompatibility of thermally hydrocarbonized porous silicon nanoparticles and their biodistribution in rats. ACS Nano 4(6):3023–3032

    Article  Google Scholar 

  • Brecht A, Gauglitz G (1995) Optical probes and transducers. Biosens Bioelectron 10:923–936

    Article  Google Scholar 

  • Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57(10):1046–1048

    Article  Google Scholar 

  • Canham LT (1995) Bioactive silicon structure fabrication through nanoetching techniques. Adv Mater (Weinheim, Ger) 7(12):1033–1037

    Article  Google Scholar 

  • Canham LT, Newey JP, Reeves CL, Houlton MR, Loni A, Simons AJ, Cox TI (1996) The effects of DC electric currents on the in-vitro calcification of bioactive silicon wafers. Adv Mater (Weinheim, Ger) 8(10):847–849

    Article  Google Scholar 

  • Canham LT, Reeves CL, Newey JP, Houlton MR, Cox TI, Buriak JM, Stewart MP (1999) Derivatized mesoporous silicon with dramatically improved stability in simulated human blood plasma. Adv Mater (Weinheim, Ger) 11(18):1505–1507

    Article  Google Scholar 

  • Canham LT, Stewart MP, Buriak JM, Reeves CL, Anderson M, Squire EK, Allcock P, Snow PA (2000) Derivatized porous silicon mirrors: implantable optical components with slow resorbability. Physica Status Solidi A 182(1):521–525

    Article  Google Scholar 

  • Carlisle EM (1972) Silicon: an essential element for the chick. Science 178(4061):619–621

    Article  Google Scholar 

  • Carlisle EM (1982) The nutritional essentiality of silicon. Nutr Rev 40(7):193–198

    Article  Google Scholar 

  • Chan S, Fauchet PM, Li Y, Rothberg LJ, Miller BL (2000) Porous silicon microcavities for biosensing applications. Physica Status Solidi A 182(1):541–546

    Article  Google Scholar 

  • Cheng L, Anglin E, Cunin F, Kim D, Sailor MJ, Falkenstein I, Tammewar A, Freeman WR (2008) Intravitreal properties of porous silicon photonic crystals: a potential self-reporting iIntraocular drug-delivery vehicle (Laboratory Science)(Clinical Report). Br J Ophthalmol 92(5):705(7)

    Google Scholar 

  • Clements LR, Wang PY, Harding F, Tsai WB, Thissen H, Voelcker NH (2011) Mesenchymal stem cell attachment to peptide density gradients on porous silicon generated by electrografting. Physica Status Solidi A 208(6):1440–1445

    Article  Google Scholar 

  • De Angelis F, Pujia A, Falcone C, Iaccino E, Palmieri C, Liberale C, Mecarini F, Candeloro P, Luberto L, De Laurentiis A (2010) Water soluble nanoporous nanoparticle for in vivo targeted drug delivery and controlled release in B cells tumor context. Nanoscale 2(10):2230–2236

    Article  Google Scholar 

  • Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239–247

    Article  Google Scholar 

  • Foraker AB, Walczak RJ, Cohen MH, Boiarski TA, Grove C, Swaan P (2003) Microfabricated porous silicon particles enhance paracellular delivery of insulin across intestinal caco-2 cell monolayers. Pharm Res 20(1):110–116

    Article  Google Scholar 

  • Gentile F, La Rocca R, Marinaro G, Nicastri A, Toma A, Paonessa F, Cojoc G, Liberale C, Benfenati F, di Fabrizio E, Decuzzi P (2012) Differential cell adhesion on mesoporous silicon substrates. ACS Appl Mater Interfaces 4(6):2903–2911

    Article  Google Scholar 

  • Godin B, Gu J, Serda RE, Bhavane R, Tasciotti E, Chiappini C, Liu X, Tanaka T, Decuzzi P, Ferrari M (2010) Tailoring the degradation kinetics of mesoporous silicon structures through Pegylation. J Biomed Mater Res A 94A(4):1236–1243

    Google Scholar 

  • Godin B, Chiappini C, Srinivasan S, Alexander JF, Yokoi K, Ferrari M, Decuzzi P, Liu X (2012) Discoidal porous silicon particles: fabrication and biodistribution in breast cancer bearing mice. Adv Funct Mater 22(20):4225–4235

    Article  Google Scholar 

  • Guillermain E, Lysenko V, Orobtchouk R, Benyattou T, Roux S, Pillonnet A, Perriat P (2007) Bragg surface wave device based on porous silicon and its application for sensing. Appl Phys Lett 90(24):241116-3

    Article  Google Scholar 

  • Jane A, Dronov R, Hodges A, Voelcker NH (2009) Porous silicon biosensors on the advance. Trends Biotechnol 27(4):230–239

    Article  Google Scholar 

  • Johansson F, Kanje M, Eriksson C, Wallman L (2005) Guidance of neurons on porous patterned silicon: is pore size important? Phys Status Solidi C 2(9):3258–3262

    Article  Google Scholar 

  • Johansson F, Kanje M, Linsmeier CE, Wallman L (2008) The influence of porous silicon on axonal outgrowth in vitro. IEEE Trans Biomed Eng 55(4):1447–1449

    Article  Google Scholar 

  • Johansson F, Wallman L, Danielsen N, Schouenborg J, Kanje M (2009) Porous silicon as a potential electrode material in a nerve repair setting: tissue reactions. Acta Biomater 5(6):2230–2237

    Article  Google Scholar 

  • Khung Y-L, Graney SD, Voelcker NH (2006) Micropatterning of porous silicon films by direct laser writing. Biotechnol Prog 22(5):1388–1393

    Article  Google Scholar 

  • Kilian KA, Böcking T, Ilyas S, Gaus K, Jessup W, Gal M, Gooding JJ (2007) Forming antifouling organic multilayers on porous silicon rugate filters towards in vivo/Ex vivo biophotonic devices. Adv Funct Mater 17(15):2884–2890

    Article  Google Scholar 

  • Kilpeläinen M, Riikonen J, Vlasova MA, Huotari A, Lehto VP, Salonen J, Herzig KH, Järvinen K (2009) In vivo delivery of a peptide, ghrelin antagonist, with mesoporous silicon microparticles. J Control Release 137(2):166–170

    Article  Google Scholar 

  • Kovalainen M, Mönkäre J, Mäkilä E, Salonen J, Lehto V-P, Herzig KH, Järvinen K (2012) Mesoporous silicon (Psi) for sustained peptide delivery: effect of Psi microparticle surface chemistry on peptide Yy3-36 release. Pharm Res 29(3):837–846

    Article  Google Scholar 

  • Kovalev D, Gross E, Kunzner N, Koch F, Timoshenko VY, Fujii M (2002) Resonant electronic energy transfer from excitons confined in silicon nanocrystals to oxygen molecules. Appl Phys Lett 89(13):1374011–1374014

    Google Scholar 

  • Kovalev D, Gross E, Diener J, Timoshenko VY, Fujii M (2004) Photodegradation of porous silicon induced by photogenerated singlet oxygen molecules. Appl Phys Lett 85(16):3590–3592

    Article  Google Scholar 

  • Letant SE, Hart BR, Van Buuren AW, Terminello LJ (2003) Functionalized silicon membranes for selective Bio-organism capture. Nat Mater 2:391–395

    Article  Google Scholar 

  • Letant SE, Hart BR, Kane SR, Hadi MZ, Shields SJ, Reynolds JG (2004) Enzyme immobilization on porous silicon surfaces. Adv Mater (Weinheim, Ger) 16(8):689–693

    Article  Google Scholar 

  • Lin VS-Y, Motesharei K, Dancil K-PS, Sailor MJ, Ghadiri MR (1997) A porous silicon-based optical interferometric biosensor. Science 278(5339):840–843

    Article  Google Scholar 

  • Low SP, Williams KA, Canham LT, Voelcker NH (2006) Evaluation of mammalian cell adhesion on surface modified porous silicon. Biomaterials 27:4538–4546

    Article  Google Scholar 

  • Low SP, Voelcker NH, Canham LT, Williams KA (2009) The biocompatibility of porous silicon in tissues of the eye. Biomaterials 30(15):2873–2880

    Article  Google Scholar 

  • Low SP, Williams KA, Canham LT, Voelcker NH (2010) Generation of reactive oxygen species from porous silicon microparticles in cell culture medium. J Biomed Mater Res A 93A(3):1124–1131

    Google Scholar 

  • Mayne AH, Bayliss SC, Barr P, Tobin M, Buckberry LD (2000) Biologically interfaced porous silicon devices. Phys Status Solidi A 182:505–513

    Article  Google Scholar 

  • Meraz IM, Melendez B, Gu J, Wong STC, Liu X, Andersson HA, Serda RE (2012) Activation of the inflammasome and enhanced migration of microparticle-stimulated dendritic cells to the draining lymph node. Mol Pharm 9(7):2049–2062

    Article  Google Scholar 

  • Moxon KA, Hallman S, Aslani A, Kalkhoran NM, Lelkes PI (2007) Bioactive properties of nanostructured porous silicon for enhancing electrode to neuron interfaces. J Biomater Sci Polym Ed 18(10):1263–1281

    Article  Google Scholar 

  • Noval AM, Vaquero VS, Quijorna EP, Costa VT, Pérez DG, Méndez LG, Montero I, Palma RJM, Font AC, Ruiz JPG, Silván MM (2012) Aging of porous silicon in physiological conditions: cell adhesion modes on scaled 1d micropatterns. J Biomed Mater Res A 100A(6):1615–1622

    Article  Google Scholar 

  • Park JH, Gu L, von Maltzahn G, Ruoslahti E, Bhatia SN, Sailor MJ (2009) Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nat Mater 8(4):331–336

    Article  Google Scholar 

  • Pavesi L, Dubos P (1997) Random porous silicon multilayers: application to distributed Bragg reflectors and interferential fabry – pérot filters. Semicond Sci Technol 12(5):570

    Article  Google Scholar 

  • Porter AE, Buckland T, Hing K, Best SM, Bonfield W (2006) The structure of the bond between bone and porous silicon-substituted hydroxyapatite bioceramic implants. J Biomed Mater Res A 78A(1):25–33

    Article  Google Scholar 

  • Ratner BD, Bryant SJ (2004) Biomaterials: where we have been and where we are going. Annu Rev Biomed Eng 6:41–75

    Article  Google Scholar 

  • Reffit DM, Jugdaohsingh R, Thompson RP, Powell JJ (1999) Silicic acid: its gastrointestinal uptake and urinary excretion in man and effects on aluminium excretion. J Inorg Biochem 76:141–147

    Article  Google Scholar 

  • Refuerzo JS, Godin B, Bishop K, Srinivasan S, Shah SK, Amra S, Ramin SM, Ferrari M (2011) Size of the nanovectors determines the transplacental passage in pregnancy: study in rats. Am J Obstet Gynecol 204(6):546.e5–546.e9

    Article  Google Scholar 

  • Rosengren A, Wallman L, Bengtsson M, Laurell T, Danielsen N, Bjursten LM (2000) Tissue reactions to porous silicon: a comparative biomaterial study. Phys Status Solidi A 182:527–531

    Article  Google Scholar 

  • Salonen J, Laitinen L, Kaukonen AM, Tuura J, Björkqvist M, Heikkilä T, Vähä-Heikkilä K, Hirvonen J, Lehto VP (2005) Mesoporous silicon microparticles for oral drug delivery: loading and release of five model drugs. J Control Release 108:362–374

    Article  Google Scholar 

  • Santos HA, Riikonen J, Salonen J, Mäkilä E, Heikkilä T, Laaksonen T, Peltonen L, Lehto V-P, Hirvonen J (2010) In vitro cytotoxicity of porous silicon microparticles: effect of the particle concentration surface chemistry and size. Acta Biomater 6(7):2721–2731

    Article  Google Scholar 

  • Sarparanta M, Mäkilä E, Heikkilä T, Salonen J, Kukk E, Lehto V-P, Santos HA, Hirvonen J, Airaksinen AJ (2011) 18F-Labeled modified porous silicon particles for investigation of drug delivery carrier distribution in vivo with positron emission tomography. Mol Pharm 8(5):1799–1806

    Article  Google Scholar 

  • Sarparanta MP, Bimbo LM, Mäkilä EM, Salonen JJ, Laaksonen PH, Helariutta AMK, Linder MB, Hirvonen JT, Laaksonen TJ, Santos HA, Airaksinen AJ (2012) The mucoadhesive and gastroretentive properties of hydrophobin-coated porous silicon nanoparticle oral drug delivery systems. Biomaterials 33(11):3353–3362

    Article  Google Scholar 

  • Schwartz MP, Derfus AM, Alvarez SD, Bhatia SN, Sailor MJ (2006) The smart Petri dish: a nanostructured photonic crystal for real-time monitoring of living cells. Langmuir 22(16):7084–7090

    Article  Google Scholar 

  • Starodub VM, Fedorenko LL, Sisetskiy AP, Starodub NF (1999) Control of myoglobin level in a solution by an immune sensor based on the photoluminescence of porous silicon. Sens Actuators B 58:409–414

    Article  Google Scholar 

  • Steinem C, Janshoff A, Lin VS-Y, Volcker HE, Ghadiri MR (2004) DNA hybridization-enhanced porous silicon corrosion: mechanistic investigations and prospect for optical interferometric biosensing. Tetrahedron 60:11259–11267

    Article  Google Scholar 

  • Sweetman MJ, Harding FJ, Graney SD, Voelcker NH (2011) Effect of oligoethylene glycol moieties in porous silicon surface functionalisation on protein adsorption and cell attachment. Appl Surf Sci 257(15):6768–6774

    Article  Google Scholar 

  • Szili EJ, Jane A, Low SP, Sweetman M, Macardle P, Kumar S, Smart RSC, Voelcker NH (2011) Interferometric porous silicon transducers using an enzymatically amplified optical signal. Sens Actuators B 160(1):341–348

    Article  Google Scholar 

  • Tanaka T, Tanigawa T, Nose T, Imai S, Hayashi Y (1994) In vitro cytotoxicity of silicic acid in comparison with that of selenious acid. J Trace Elem Exp Med 7(3):101–111

    Google Scholar 

  • Tanaka T, Godin B, Bhavane R, Nieves-Alicea R, Gu J, Liu X, Chiappini C, Fakhoury JR, Amra S, Ewing A, Li Q, Fidler IJ, Ferrari M (2010a) In vivo evaluation of safety of nanoporous silicon carriers following single and multiple dose intravenous administrations in mice. Int J Pharm 402:190–197

    Article  Google Scholar 

  • Tanaka T, Mangala LS, Vivas-Mejia PE, Nieves-Alicea R, Mann AP, Mora E, Han H-D, Shahzad MMK, Liu X, Bhavane R, Gu J, Fakhoury JR, Chiappini C, Lu C, Matsuo K, Godin B, Stone RL, Nick AM, Lopez-Berestein G, Sood AK, Ferrari M (2010b) Sustained small interfering RNA delivery by mesoporous silicon particles. Cancer Res 70(9):3687–3696

    Article  Google Scholar 

  • Wang F, Hui H, Barnes TJ, Barnett C, Prestidge CA (2009) Oxidized mesoporous silicon microparticles for improved oral delivery of poorly soluble drugs. Mol Pharm 7(1):227–236

    Article  Google Scholar 

  • Williams DF (2008) On the mechanisms of biocompatibility. Biomaterials 29(20):2941–2953

    Article  Google Scholar 

  • Yang C-Y, Huang L-Y, Shen T-L, Yeh JA (2010) Cell adhesion, morphology and biochemistry on nano-topographic oxidised silicon surfaces. Eur Cell Mater 20:415–430

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suet P. Low .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Low, S.P., Voelcker, N.H. (2014). Biocompatibility of Porous Silicon. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-05744-6_38

Download citation

Publish with us

Policies and ethics