Introduction
The lunar magma ocean (LMO) is a term used in planetary science to describe the thermal state of Earth’s Moon in the thousands to millions of years following its formation. The most widely accepted model for the formation of the Moon invokes a collision between proto-Earth and another proto-planet, often referred to as Theia (e.g., Hartmann and Davis 1975; Cameron and Ward 1976; Pritchard and Stevenson 2000; Canup and Asphaug 2001; Canup 2004, 2012; Ćuk and Stewart 2012). The Moon accreted from the resulting debris disk surrounding the Earth, which likely consisted of molten and vaporized silicate material. The accretion of the Moon from this debris disk leads to a body in a largely or completely molten state. This “magmasphere” is referred to as the LMO (Warren 1985).
The composition of the LMO is likely that of the bulk silicate Moon (BSM) and estimates of its depth have ranged from ~250 km to whole Moon melting (e.g., Taylor and Jakeš 1974; Solomon 1977; Warren 1985;...
References
Adler I, Trombka JI (1977) Orbital chemistry – lunar-surface analysis from x-ray and gamma-ray remote-sensing experiments. Phys Chem Earth 10(1):17–43
Alibert C et al (1994) An ancient Sm-Nd age for a ferroan noritic anorthosite clast from lunar breccia 67016. Geochim Cosmochim Acta 58(13):2921–2926
Borg LE et al (1999) Isotopic studies of ferroan anorthosite 62236: a young lunar crustal rock from a light rare-earth-element-depleted source. Geochim Cosmochim Acta 63(17):2679–2691
Borg LE et al (2004) Prolonged KREEP magmatism on the Moon indicated by the youngest dated lunar igneous rock. Nature (London) 432(7014):209–211
Borg LE et al (2009) Mechanisms for incompatible element enrichment on the Moon deduced from the lunar basaltic meteorite Northwest Africa 032. Geochim Cosmochim Acta 73(13):3963–3980
Borg LE et al (2011) Chronological evidence that the Moon is either young or did not have a global magma ocean. Nature 477(7362):U70–U150
Borg LE et al (2015) A review of lunar chronology revealing a preponderance of 4.34–4.37 Ga ages. Meteor Planet Sci 50(4):715–732
Boyet M et al (2015) Sm-Nd systematics of lunar ferroan anorthositic suite rocks: constraints on lunar crust formation. Geochim Et Cosmochim Acta 148:203–218
BVSP (1981) Basaltic volcanism on the terrestrial planets. Pergamon Press, New York, NY
Cameron AGW, Ward WR (1976) The origin of the Moon. Lunar Sci 7:120–122
Canup RM (2004) Dynamics of lunar formation. Annu Rev Astronom Astrophys 42:441–475
Canup RM (2012) Forming a Moon with an Earth-like composition from a giant impact. Science 338:1052–1055
Canup RM, Asphaug E (2001) Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412(6848):708–712
Carlson RW, Lugmair GW (1979) Sm-Nd constraints on early lunar differentiation and the evolution of kreep. Earth Planet Sci Lett 45(1):123–132
Carlson RW, Lugmair GW (1981) Time and duration of lunar highlands crust formation. Earth Planet Sci Lett 52(2):227–238
Carlson RW et al (2014) Rb-Sr, Sm-Nd and Lu-Hf isotope systematics of the lunar Mg- suite: the age of the lunar crust and its relation to the time of Moon formation. Phil Trans Roy Soc A 372(2024)
Ćuk M, Stewart ST (2012) Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science 338(6110):1047–1052
Edmunson J et al (2009) A combined Sm-Nd, Rb-Sr, and U-Pb isotopic study of Mg-suite norite 78238: further evidence for early differentiation. Geochim Et Cosmochim Acta 73(2):514–527
Elardo SM et al (2011) Lunar magma ocean crystallization revisited: bulk composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite. Geochim Cosmochim Acta 75(11):3024–3045
Elkins-Tanton LT et al (2003) Experimental and petrological constraints on lunar differentiation from the Apollo 15 green picritic glasses. Meteor Planet Sci 38(4):515–527
Elkins-Tanton LT (2012) Magma oceans in the inner solar system. Annu Rev Earth Planet Sci 40(40):113–139
Elkins-Tanton LT et al (2011) The lunar magma ocean: reconciling the solidification process with lunar petrology and geochronology. Earth Planet Sci Lett 304(3–4):326–336
Gaffney AM, Borg LE (2014) A young solidification age for the lunar magma ocean. Geochim Et Cosmochim Acta 140:227–240
Green DH et al (1971a) Experimental petrology and petrogenesis of Apollo 12 basalts. Proc 2nd Lunar Sci Conf 2:601–615
Green DH et al (1971b) Experimental petrology of Apollo 12 basalts: part 1, Sample 12009. Earth Planet Sci Lett 13(1):85–96
Hartmann WK, Davis DR (1975) Satellite-sized planetesimals and lunar origin. Icarus 24:504–515
Helmke PA et al (1972) Rare earths and other trace elements in Apollo 14 samples. Geochim Cosmochim Acta 3(2):1275–1292
Hess PC (2000) On the source regions for mare picrite glasses. J Geophys Res 105(2):4347–4360
Hubbard NJ et al (1971) The composition and derivation of Apollo 12 soils. Earth Planet Sci Lett 10(3):341–350
Jolliff BL et al (2000) Major lunar crustal terranes: surface expressions and crust-mantle origins. J Geophys Res 105(E2):4197–4216
Jones JH, Delano JW (1989) A three-component model for the bulk composition of the Moon. Geochim Cosmochim Acta 53(2):513–527
Lognonné P et al (2003) A new seismic model of the Moon: implications for structure, thermal evolution and formation of the Moon. Earth Planet Sci Lett 211(1–2):27–44
Longhi J (1992) Experimental petrology and petrogenesis of mare volcanics. Geochim Cosmochim Acta 56(6):2235–2251
Longhi J (2006) Petrogenesis of picritic mare magmas: constraints on the extent of early lunar differentiation. Geochim Cosmochim Acta 70:5919–5934
Meyer C (2011) “60025.” Lunar Sample Compendium
Meyer C Jr, Hubbard NJ (1970) High potassium, high phosphorous glass as an important rock type in the Apollo 12 soil samples. Meteoritics 5(4):210–211
Morgan JW et al (1978) The Moon: composition determined by nebular processes. Moon Planet 18(4):465–478
Neal CR (2001) Interior of the Moon: the presence of garnet in the primitive deep lunar mantle. J Geophys Res 106(E11):27865–27885
Norman MD et al (2003) Chronology, geochemistry, and petrology of a ferroan noritic anorthosite clast from Descartes breccia 67215: clues to the age, origin, structure, and impact history of the lunar crust. Meteor Planet Sci 38(4):645–661
Nyquist LE, Shih CY (1992) The isotopic record of lunar volcanism. Geochim Cosmochim Acta 56(6):2213–2234
O’Keefe JA (1968) Isostasy on Moon. Science 162(3860):1405–1406
O’Neill HSC (1991) The origin of the Moon and the early history of the Earth; a chemical model; Part 1, The Moon. Geochim Cosmochim Acta 55(4):1135–1157
Papike JJ et al (1998) Lunar samples. Rev Mineral 36:5–1–5–234
Patterson JH et al (1969) Alpha-scattering experiment on surveyor 7: comparison with surveyors 5 and 6. J Geophys Res 74(25):6120–6148
Phinney RA et al (1969) Implications of surveyor 7 results. J Geophys Res 74(25):6053
Pritchard ME, Stevenson DJ (2000) Thermal aspects of a lunar origin by giant impact. In: Canup RM, Righter K (eds) Origin of the earth and moon, The University of Arizona space science series. University of Arizona Press in collaboration with Lunar and Planetary Institute, Houston, Tucson, pp 179–196
Ringwood AE et al (1987) A komatiite component in Apollo 16 highland breccias; implications for the nickel-cobalt systematics and bulk composition of the Moon. Earth Planet Sci Lett 81(2–3):105–117
Shearer CK, Papike JJ (1993) Basaltic magmatism on the Moon: a perspective from volcanic picritic glass beads. Geochim Cosmochim Acta 57(19):4785–4812
Shearer CK, Papike JJ (1999) Magmatic evolution of the Moon. Am Mineral 84(10):1469–1494
Shearer CK et al (2006) Thermal and magmatic evolution of the Moon. Rev Mineral Geochem 60:365–518
Shih CY et al (1992) Rb-Sr and Sm-Nd chronology of an Apollo 17 Kreep Basalt. Earth Planet Sci Lett 108(4):203–215
Shih CY et al (1993) Ages of pristine noritic clasts from lunar breccias 15445 and 15455. Geochim Cosmochim Acta 57(4):915–931
Smith JV et al (1970a) A petrologic model for the Moon based on petrogenesis, experimental petrology, and physical properties. J Geol 78(4):381–405
Smith JV et al (1970b) Petrologic history of the Moon inferred from petrography, mineralogy, and petrogenesis of Apollo 11 rocks. In: Proceedings of the Apollo 11 lunar science conference, pp 897–925
Snyder GA et al (1992) A chemical model for generating the sources of mare basalts: combined equilibrium and fractional crystallization of the lunar magmasphere. Geochim Cosmochim Acta 56(10):3809–3823
Solomon SC (1977) Relationship between crustal tectonics and internal evolution in Moon and Mercury. Phys Earth Planet In 15(2–3):135–145
Taylor SR (1975) Lunar science: a post-apollo view. Pergamon Press, New York
Taylor SR (1982) Planetary science; a lunar perspective. Lunar and Planetary Institute, Houston, TX
Taylor SR, Jakeš P (1974) The geochemical evolution of the Moon. In: Proceedings of the 5th Lunar science conference, pp 1287–1305
Taylor GJ, Wieczorek MA (2014) Lunar bulk chemical composition: a post-gravity recovery and interior laboratory reassessment. Phil Trans Roy Soc A Math Phys Eng Sci 372(2024)
Taylor SR et al (2006) The Moon: a Taylor perspective. Geochim Cosmochim Acta 70:5904–5918
Walker D et al (1976) Crystallization history of Lunar Picritic Basalt sample 12002: phase- equilibria and cooling-rate studies. Geol Soc Am Bull 87(5):646–656
Warren PH (1985) The magma ocean concept and lunar evolution. Annu Rev Earth Planet Sci 13:201–240
Warren PH (1989) KREEP: major-element diversity, trace-element uniformity (almost). In: Workshop on the Moon in transition: Apollo 14, KREEP and evolved lunar rocks 89-03:149–153
Warren PH (2005) “New” lunar meteorites: implications for composition of the global lunar surface, lunar crust, and bulk Moon. Meteor Planet Sci 40:477–506
Warren PH, Wasson JT (1977) Pristine nonmare rocks and the nature of the lunar crust. In: 8th Lunar science conference, pp 2215–2235
Warren PH, Wasson JT (1979) Origin of KREEP. Rev Geophys Space Phys 17:73–88
Weber RC et al (2011) Seismic detection of the lunar core. Science 331:309–312
Wieczorek MA et al (2006) The constitution and structure of the lunar interior. Rev Mineral Geochem 60:221–364
Wood JA et al (1970a) Lunar anorthosites. Science 167(3918):602–604
Wood JA et al (1970b) Lunar anorthosites and a geophysical model of the Moon. In: Proceedings of the Apollo 11 lunar science conference, pp 965–988
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this entry
Cite this entry
Elardo, S. (2015). Lunar Magma Ocean Theory, Origins, and Rationale. In: Cudnik, B. (eds) Encyclopedia of Lunar Science. Springer, Cham. https://doi.org/10.1007/978-3-319-05546-6_25-1
Download citation
DOI: https://doi.org/10.1007/978-3-319-05546-6_25-1
Received:
Accepted:
Published:
Publisher Name: Springer, Cham
Online ISBN: 978-3-319-05546-6
eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics