Encyclopedia of Lunar Science

Living Edition
| Editors: Brian Cudnik

Lunar Magma Ocean Theory, Origins, and Rationale

  • Stephen Elardo
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-05546-6_25-1


The lunar magma ocean (LMO) is a term used in planetary science to describe the thermal state of Earth’s Moon in the thousands to millions of years following its formation. The most widely accepted model for the formation of the Moon invokes a collision between proto-Earth and another proto-planet, often referred to as Theia (e.g., Hartmann and Davis 1975; Cameron and Ward 1976; Pritchard and Stevenson 2000; Canup and Asphaug 2001; Canup 2004, 2012; Ćuk and Stewart 2012). The Moon accreted from the resulting debris disk surrounding the Earth, which likely consisted of molten and vaporized silicate material. The accretion of the Moon from this debris disk leads to a body in a largely or completely molten state. This “magmasphere” is referred to as the LMO (Warren 1985).

The composition of the LMO is likely that of the bulk silicate Moon (BSM) and estimates of its depth have ranged from ~250 km to whole Moon melting (e.g., Taylor and Jakeš 1974; Solomon 1977; Warren 1985;...

This is a preview of subscription content, log in to check access.


  1. Adler I, Trombka JI (1977) Orbital chemistry – lunar-surface analysis from x-ray and gamma-ray remote-sensing experiments. Phys Chem Earth 10(1):17–43ADSCrossRefGoogle Scholar
  2. Alibert C et al (1994) An ancient Sm-Nd age for a ferroan noritic anorthosite clast from lunar breccia 67016. Geochim Cosmochim Acta 58(13):2921–2926ADSCrossRefGoogle Scholar
  3. Borg LE et al (1999) Isotopic studies of ferroan anorthosite 62236: a young lunar crustal rock from a light rare-earth-element-depleted source. Geochim Cosmochim Acta 63(17):2679–2691ADSCrossRefGoogle Scholar
  4. Borg LE et al (2004) Prolonged KREEP magmatism on the Moon indicated by the youngest dated lunar igneous rock. Nature (London) 432(7014):209–211ADSCrossRefGoogle Scholar
  5. Borg LE et al (2009) Mechanisms for incompatible element enrichment on the Moon deduced from the lunar basaltic meteorite Northwest Africa 032. Geochim Cosmochim Acta 73(13):3963–3980ADSCrossRefGoogle Scholar
  6. Borg LE et al (2011) Chronological evidence that the Moon is either young or did not have a global magma ocean. Nature 477(7362):U70–U150ADSCrossRefGoogle Scholar
  7. Borg LE et al (2015) A review of lunar chronology revealing a preponderance of 4.34–4.37 Ga ages. Meteor Planet Sci 50(4):715–732ADSCrossRefGoogle Scholar
  8. Boyet M et al (2015) Sm-Nd systematics of lunar ferroan anorthositic suite rocks: constraints on lunar crust formation. Geochim Et Cosmochim Acta 148:203–218ADSCrossRefGoogle Scholar
  9. BVSP (1981) Basaltic volcanism on the terrestrial planets. Pergamon Press, New York, NYGoogle Scholar
  10. Cameron AGW, Ward WR (1976) The origin of the Moon. Lunar Sci 7:120–122ADSGoogle Scholar
  11. Canup RM (2004) Dynamics of lunar formation. Annu Rev Astronom Astrophys 42:441–475ADSCrossRefGoogle Scholar
  12. Canup RM (2012) Forming a Moon with an Earth-like composition from a giant impact. Science 338:1052–1055ADSCrossRefGoogle Scholar
  13. Canup RM, Asphaug E (2001) Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412(6848):708–712ADSCrossRefGoogle Scholar
  14. Carlson RW, Lugmair GW (1979) Sm-Nd constraints on early lunar differentiation and the evolution of kreep. Earth Planet Sci Lett 45(1):123–132ADSCrossRefGoogle Scholar
  15. Carlson RW, Lugmair GW (1981) Time and duration of lunar highlands crust formation. Earth Planet Sci Lett 52(2):227–238ADSCrossRefGoogle Scholar
  16. Carlson RW et al (2014) Rb-Sr, Sm-Nd and Lu-Hf isotope systematics of the lunar Mg- suite: the age of the lunar crust and its relation to the time of Moon formation. Phil Trans Roy Soc A 372(2024)Google Scholar
  17. Ćuk M, Stewart ST (2012) Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science 338(6110):1047–1052ADSCrossRefGoogle Scholar
  18. Edmunson J et al (2009) A combined Sm-Nd, Rb-Sr, and U-Pb isotopic study of Mg-suite norite 78238: further evidence for early differentiation. Geochim Et Cosmochim Acta 73(2):514–527ADSCrossRefGoogle Scholar
  19. Elardo SM et al (2011) Lunar magma ocean crystallization revisited: bulk composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite. Geochim Cosmochim Acta 75(11):3024–3045ADSCrossRefGoogle Scholar
  20. Elkins-Tanton LT et al (2003) Experimental and petrological constraints on lunar differentiation from the Apollo 15 green picritic glasses. Meteor Planet Sci 38(4):515–527ADSCrossRefGoogle Scholar
  21. Elkins-Tanton LT (2012) Magma oceans in the inner solar system. Annu Rev Earth Planet Sci 40(40):113–139ADSCrossRefGoogle Scholar
  22. Elkins-Tanton LT et al (2011) The lunar magma ocean: reconciling the solidification process with lunar petrology and geochronology. Earth Planet Sci Lett 304(3–4):326–336ADSCrossRefGoogle Scholar
  23. Gaffney AM, Borg LE (2014) A young solidification age for the lunar magma ocean. Geochim Et Cosmochim Acta 140:227–240ADSCrossRefGoogle Scholar
  24. Green DH et al (1971a) Experimental petrology and petrogenesis of Apollo 12 basalts. Proc 2nd Lunar Sci Conf 2:601–615ADSGoogle Scholar
  25. Green DH et al (1971b) Experimental petrology of Apollo 12 basalts: part 1, Sample 12009. Earth Planet Sci Lett 13(1):85–96ADSCrossRefGoogle Scholar
  26. Hartmann WK, Davis DR (1975) Satellite-sized planetesimals and lunar origin. Icarus 24:504–515ADSCrossRefGoogle Scholar
  27. Helmke PA et al (1972) Rare earths and other trace elements in Apollo 14 samples. Geochim Cosmochim Acta 3(2):1275–1292Google Scholar
  28. Hess PC (2000) On the source regions for mare picrite glasses. J Geophys Res 105(2):4347–4360ADSCrossRefGoogle Scholar
  29. Hubbard NJ et al (1971) The composition and derivation of Apollo 12 soils. Earth Planet Sci Lett 10(3):341–350ADSMathSciNetCrossRefGoogle Scholar
  30. Jolliff BL et al (2000) Major lunar crustal terranes: surface expressions and crust-mantle origins. J Geophys Res 105(E2):4197–4216ADSCrossRefGoogle Scholar
  31. Jones JH, Delano JW (1989) A three-component model for the bulk composition of the Moon. Geochim Cosmochim Acta 53(2):513–527ADSCrossRefGoogle Scholar
  32. Lognonné P et al (2003) A new seismic model of the Moon: implications for structure, thermal evolution and formation of the Moon. Earth Planet Sci Lett 211(1–2):27–44ADSCrossRefGoogle Scholar
  33. Longhi J (1992) Experimental petrology and petrogenesis of mare volcanics. Geochim Cosmochim Acta 56(6):2235–2251ADSCrossRefGoogle Scholar
  34. Longhi J (2006) Petrogenesis of picritic mare magmas: constraints on the extent of early lunar differentiation. Geochim Cosmochim Acta 70:5919–5934ADSCrossRefGoogle Scholar
  35. Meyer C (2011) “60025.” Lunar Sample CompendiumGoogle Scholar
  36. Meyer C Jr, Hubbard NJ (1970) High potassium, high phosphorous glass as an important rock type in the Apollo 12 soil samples. Meteoritics 5(4):210–211ADSGoogle Scholar
  37. Morgan JW et al (1978) The Moon: composition determined by nebular processes. Moon Planet 18(4):465–478ADSCrossRefGoogle Scholar
  38. Neal CR (2001) Interior of the Moon: the presence of garnet in the primitive deep lunar mantle. J Geophys Res 106(E11):27865–27885ADSCrossRefGoogle Scholar
  39. Norman MD et al (2003) Chronology, geochemistry, and petrology of a ferroan noritic anorthosite clast from Descartes breccia 67215: clues to the age, origin, structure, and impact history of the lunar crust. Meteor Planet Sci 38(4):645–661ADSMathSciNetCrossRefGoogle Scholar
  40. Nyquist LE, Shih CY (1992) The isotopic record of lunar volcanism. Geochim Cosmochim Acta 56(6):2213–2234ADSCrossRefGoogle Scholar
  41. O’Keefe JA (1968) Isostasy on Moon. Science 162(3860):1405–1406ADSCrossRefGoogle Scholar
  42. O’Neill HSC (1991) The origin of the Moon and the early history of the Earth; a chemical model; Part 1, The Moon. Geochim Cosmochim Acta 55(4):1135–1157ADSCrossRefGoogle Scholar
  43. Papike JJ et al (1998) Lunar samples. Rev Mineral 36:5–1–5–234Google Scholar
  44. Patterson JH et al (1969) Alpha-scattering experiment on surveyor 7: comparison with surveyors 5 and 6. J Geophys Res 74(25):6120–6148ADSCrossRefGoogle Scholar
  45. Phinney RA et al (1969) Implications of surveyor 7 results. J Geophys Res 74(25):6053ADSCrossRefGoogle Scholar
  46. Pritchard ME, Stevenson DJ (2000) Thermal aspects of a lunar origin by giant impact. In: Canup RM, Righter K (eds) Origin of the earth and moon, The University of Arizona space science series. University of Arizona Press in collaboration with Lunar and Planetary Institute, Houston, Tucson, pp 179–196Google Scholar
  47. Ringwood AE et al (1987) A komatiite component in Apollo 16 highland breccias; implications for the nickel-cobalt systematics and bulk composition of the Moon. Earth Planet Sci Lett 81(2–3):105–117ADSCrossRefGoogle Scholar
  48. Shearer CK, Papike JJ (1993) Basaltic magmatism on the Moon: a perspective from volcanic picritic glass beads. Geochim Cosmochim Acta 57(19):4785–4812ADSCrossRefGoogle Scholar
  49. Shearer CK, Papike JJ (1999) Magmatic evolution of the Moon. Am Mineral 84(10):1469–1494ADSCrossRefGoogle Scholar
  50. Shearer CK et al (2006) Thermal and magmatic evolution of the Moon. Rev Mineral Geochem 60:365–518CrossRefGoogle Scholar
  51. Shih CY et al (1992) Rb-Sr and Sm-Nd chronology of an Apollo 17 Kreep Basalt. Earth Planet Sci Lett 108(4):203–215ADSCrossRefGoogle Scholar
  52. Shih CY et al (1993) Ages of pristine noritic clasts from lunar breccias 15445 and 15455. Geochim Cosmochim Acta 57(4):915–931ADSCrossRefGoogle Scholar
  53. Smith JV et al (1970a) A petrologic model for the Moon based on petrogenesis, experimental petrology, and physical properties. J Geol 78(4):381–405ADSCrossRefGoogle Scholar
  54. Smith JV et al (1970b) Petrologic history of the Moon inferred from petrography, mineralogy, and petrogenesis of Apollo 11 rocks. In: Proceedings of the Apollo 11 lunar science conference, pp 897–925Google Scholar
  55. Snyder GA et al (1992) A chemical model for generating the sources of mare basalts: combined equilibrium and fractional crystallization of the lunar magmasphere. Geochim Cosmochim Acta 56(10):3809–3823ADSCrossRefGoogle Scholar
  56. Solomon SC (1977) Relationship between crustal tectonics and internal evolution in Moon and Mercury. Phys Earth Planet In 15(2–3):135–145ADSCrossRefGoogle Scholar
  57. Taylor SR (1975) Lunar science: a post-apollo view. Pergamon Press, New YorkGoogle Scholar
  58. Taylor SR (1982) Planetary science; a lunar perspective. Lunar and Planetary Institute, Houston, TXGoogle Scholar
  59. Taylor SR, Jakeš P (1974) The geochemical evolution of the Moon. In: Proceedings of the 5th Lunar science conference, pp 1287–1305Google Scholar
  60. Taylor GJ, Wieczorek MA (2014) Lunar bulk chemical composition: a post-gravity recovery and interior laboratory reassessment. Phil Trans Roy Soc A Math Phys Eng Sci 372(2024)Google Scholar
  61. Taylor SR et al (2006) The Moon: a Taylor perspective. Geochim Cosmochim Acta 70:5904–5918ADSCrossRefGoogle Scholar
  62. Walker D et al (1976) Crystallization history of Lunar Picritic Basalt sample 12002: phase- equilibria and cooling-rate studies. Geol Soc Am Bull 87(5):646–656CrossRefGoogle Scholar
  63. Warren PH (1985) The magma ocean concept and lunar evolution. Annu Rev Earth Planet Sci 13:201–240ADSCrossRefGoogle Scholar
  64. Warren PH (1989) KREEP: major-element diversity, trace-element uniformity (almost). In: Workshop on the Moon in transition: Apollo 14, KREEP and evolved lunar rocks 89-03:149–153Google Scholar
  65. Warren PH (2005) “New” lunar meteorites: implications for composition of the global lunar surface, lunar crust, and bulk Moon. Meteor Planet Sci 40:477–506ADSCrossRefGoogle Scholar
  66. Warren PH, Wasson JT (1977) Pristine nonmare rocks and the nature of the lunar crust. In: 8th Lunar science conference, pp 2215–2235Google Scholar
  67. Warren PH, Wasson JT (1979) Origin of KREEP. Rev Geophys Space Phys 17:73–88ADSCrossRefGoogle Scholar
  68. Weber RC et al (2011) Seismic detection of the lunar core. Science 331:309–312ADSCrossRefGoogle Scholar
  69. Wieczorek MA et al (2006) The constitution and structure of the lunar interior. Rev Mineral Geochem 60:221–364CrossRefGoogle Scholar
  70. Wood JA et al (1970a) Lunar anorthosites. Science 167(3918):602–604ADSCrossRefGoogle Scholar
  71. Wood JA et al (1970b) Lunar anorthosites and a geophysical model of the Moon. In: Proceedings of the Apollo 11 lunar science conference, pp 965–988Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Geophysical LaboratoryCarnegie Institution of WashingtonWashingtonUSA