Skip to main content

Cis-Lunar Trajectory

  • Living reference work entry
  • First Online:
Encyclopedia of Lunar Science

Description

Cis-lunar trajectories encompass all of the orbits revolving around the Earth (circumterrestrial) and Moon (circumlunar), as well as those about the Earth-Moon Lagrange points (libration point orbits) and the various paths between the Earth and Moon (trans-lunar trajectories and transfers). The scope herein is limited to the later classes of orbits, thereby omitting discussions on near-Earth trajectories from low-Earth orbits to the geosynchronous regime and the bounded selenocentric orbital regions such as low-lunar orbits.

Introduction

New transportation, communication, and logistic infrastructures are being planned and developed for cis-lunar space in the Earth-Moon system. Cis-lunar (alternatively, cislunar) space refers to the orbital regimes about the Earth out to and including the region around the surface of the Moon. A wide variety of dynamical models are employed to approximate the diversity of trajectories in cis-lunar space. Whereas circumterrestrial and...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Amato D, Malhotra R, Sidorenko V, Rosengren AJ (2020) Lunar close encounters compete with circumterrestrial Lidov-Kozai effect. The dynamical demise of Luna 3. Celest Mech Dyn Astron 132:35. (18 pp

    Article  ADS  MathSciNet  Google Scholar 

  • Belbruno EA, Miller JK (1993) Sun-perturbed Earth-to-Moon transfers with ballistic capture. J Guid Control Dyn 16:770–775

    Article  ADS  Google Scholar 

  • Bezrouk C, Parker JS (2017) Long term evolution of distant retrograde orbits in the Earth-Moon system. Astrophys Space Sci 362:176. (11 pp

    Article  ADS  Google Scholar 

  • Boudad KK, Howell KC, Davis DC (2020) Dynamics of synodic resonant near rectilinear halo orbits in the bi-circular four-body problem. Adv Space Res 66:2194–2214

    Article  ADS  Google Scholar 

  • Butler P (1980) Interplanetary monitoring platform. Engineering history and achievements. NASA TM-80758, Greenbelt

    Google Scholar 

  • Curtis HD (2020) Orbital mechanics for engineering students, 4th edn. Butterworth-Heinemann, Cambridge

    Google Scholar 

  • Dichmann DJ, Lebois R, Carrico JP Jr (2014) Dynamics of orbits near 3:1 resonance in the Earth-Moon system. J Astronaut Sci 60:51–86

    Article  Google Scholar 

  • Egorov VA (1969) Three-dimensional lunar trajectories. Israel Program for Scientific Translations, Jerusalem

    Google Scholar 

  • Eismont NA, Ditrikh AV, Janin G et al (2003) Orbit design for launching INTEGRAL on the Proton/Block-DM launcher. Astron Astrophys 411:L37–L41

    Article  ADS  Google Scholar 

  • Farquhar RW, Kamel AA (1973) Quasi-periodic orbits about the translunar libration point. Celest Mech 7:458–473

    Article  ADS  Google Scholar 

  • Galeev AA, Gal’Perin YI, Zelenyi LM (1996) The INTERBALL project to study solar-terrestrial physics. Kos Is 34:339–362

    ADS  Google Scholar 

  • Harvey B (2007) Soviet and Russian Lunar Exploration. Springer-Praxis, Chichester

    Google Scholar 

  • Janin G, Roth EA (1976) Decay of a highly eccentric satellites. Celest Mech 14:141–149

    Article  ADS  Google Scholar 

  • Jansen F, Lumb D, Altieri B et al (2001) XMM-Newton observatory: I. The spacecraft and operations. Astron Astrophys 365:L1–L6

    Article  ADS  Google Scholar 

  • Jorba A, Jorba-Cusco M, Rosales JJ (2020) The vicinity of the Earth-Moon’ L1 point in the bi-circular problem. Celest Mech Dyn Astron 132:11. (25 pp

    Article  ADS  Google Scholar 

  • Kluever CA, Pierson BL (1995) Optimal low-thrust three-dimensional Earth-Moon trajectories. J Guid Control Dyn 18:830–837

    Article  ADS  Google Scholar 

  • Koon WS, Lo MW, Marsden JE, Ross SD (2001) Low-energy transfer to the Moon. Celest Mech Dyn Astron 81:63–73

    Article  ADS  MathSciNet  Google Scholar 

  • Liu JJF, Segrest J, Szebehely V (1986) Orbit mechanics of deep space probes. J Astronaut Sci 34:171–187

    Google Scholar 

  • Ludwig GH (1963) The orbiting geophysical observatories. Space Sci Rev 2:175–218

    Article  ADS  Google Scholar 

  • Mazanek DD, Reeves DM, Abell PA et al (2016) Asteroid Redirect Mission (ARM) Formulation. Assessment and Support Team (FAST) Final Report, NASA/TM-2016-219011, Hampton

    Google Scholar 

  • McComas DJ, Carrico J, Hautamaki JP et al (2011) A new class of long-term stable lunar resonance orbits: Space weather applications and the interstellar boundary explorer. Space Weather 9:S11002. (9 pp

    Article  ADS  Google Scholar 

  • Mohn L, Kevorkian J (1967) Some limiting cases of the restricted four-body problem. Astron J 72:959–963

    Article  ADS  Google Scholar 

  • Nie T, Gurfil P (2018) Lunar frozen orbits revisited. Celest Mech Dyn Astron 130:61. (35 pp

    Article  ADS  MathSciNet  Google Scholar 

  • Ocampo C (2005) Trajectory analysis for the lunar flyby rescue of AsiaSat-3/HGS-1. Ann N Y Acad Sci 1065:232–253

    Article  ADS  Google Scholar 

  • Parker JS, Anderson RL (2014) Low-energy lunar trajectory design. Wiley, Hoboken

    Book  Google Scholar 

  • Ricker GR, Winn JN, Vanderspek R et al (2015) Transiting exoplanet survey satellite. J Astron Telesc Inst 1:014003. (11 pp

    Article  ADS  Google Scholar 

  • Rosengren AJ, Skoulidou DK, Tsiganis K, Voyatzis G (2019) Dynamical cartography of Earth satellite orbits. Adv Space Res 63:443–460

    Article  ADS  Google Scholar 

  • Sandifer RJ, Shute BE (1962) Effect of solar-lunar perturbations on the lifetime of Explorer XII (abstract). Astron J 67:282

    Article  ADS  Google Scholar 

  • Scheeres DJ (1998) The restricted Hill four-body problem with applications to the Earth-Moon-Sun system. Celest Mech Dyn Astron 70:75–98

    Google Scholar 

  • Schwaniger AJ (1963) Trajectories in the Earth-Moon space with symmetrical free-return properties, NASA TN D-1833, Huntsville

    Google Scholar 

  • Shevchenko II (2017) The Lidov-Kozai Effect – Applications in Exoplanet Research and Dynamical Astronomy. Springer, Cham

    Google Scholar 

  • Shute BE, Chiville J (1966) The lunar-solar effect on the orbital lifetimes of artificial satellites with highly eccentric orbits. Planet Space Sci 14:361–369

    Article  ADS  Google Scholar 

  • Swartz DA, Ghosh KK, McCollough ML et al (2003) CHANDRA X-ray observations of the spiral galaxy M81. Astrophys J Suppl Ser 144:213–242

    Article  ADS  Google Scholar 

  • Sweetser TH, Broschart SB, Angelopoulos V et al (2011) ARTEMIS mission design. Space Sci Rev 165:27–57

    Article  ADS  Google Scholar 

  • Woods WD (2008) How Apollo Flew to the Moon. Springer-Praxis, Chichester

    Book  Google Scholar 

  • Zimovan-Spreen EM, Howell KC, Davis DC (2020) Near rectilinear halo orbits and nearby higher-period dynamical structures: Orbital stability and resonance properties. Celest Mech Dyn Astron 132:28. (25 pp)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aaron J. Rosengren .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rosengren, A.J., Scheeres, D.J. (2021). Cis-Lunar Trajectory. In: Cudnik, B. (eds) Encyclopedia of Lunar Science. Springer, Cham. https://doi.org/10.1007/978-3-319-05546-6_219-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05546-6_219-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-05546-6

  • Online ISBN: 978-3-319-05546-6

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics