Encyclopedia of Lunar Science

Living Edition
| Editors: Brian Cudnik

Apollo Program

  • Hongwei Yang
  • Wenjin Zhao
Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-05546-6_101-1


Apart from the Earth, the Moon is the only extraterrestrial body from which we have obtained samples from known locations. All accomplishments of the Apollo Program have provided unique ground truths and fundamental experimental standards for future explorations (e.g., Clementine, Lunar Prospector, SMART-1, SELENE, Chandrayaan-1, Lunar Reconnaissance Orbiter, and more in the future) and invaluable information for understanding the lunar origin and evolution represented in the following areas: (1) detailed geologic investigations to provide a known geologic context for all samples and experiments relating to the lunar surface, (2) physical and chemical analysis of lunar samples for use as standards for calibrating remote sensing observations and extrapolating their results to unsampled regions, (3) absolute dating of the samples to set references for lunar chronology, (4) experimental operations on the lunar surface and in orbit to provide data sets on the interior...

This is a preview of subscription content, log in to check access.


  1. Apollo 17 Mission Report (1973) NASA, MCS-07904Google Scholar
  2. Apollo 17 Preliminary Science Report (1973) NASA SP-330Google Scholar
  3. BVSP (Basaltic Volcanism Study Project) (1981) Basaltic volcanism on the terrestrial planets. Pergamon, New YorkGoogle Scholar
  4. Cassidy W, Hapke B (1975) Effects of darkening processes on surfaces of airless bodies. Icarus 25:371–383ADSCrossRefGoogle Scholar
  5. Chappell BW, Green DH (1973) Chemical composition and petrogenetic relationships in Apollo 15 mare basalts. Earth Planet Sci Lett 18:237–246ADSCrossRefGoogle Scholar
  6. Cooper BL et al (1994) New evidence for graben origin of Oceanus Procellarum from lunar sounder optical imagery. J Geophys Res 99(E2):3799–3812ADSCrossRefGoogle Scholar
  7. Fischer EM, Pieters CM (1994) Remote determination of exposure degree and iron concentration of lunar soil using UV-NIR spectroscopic methods. Icarus 111(2):475–488ADSCrossRefGoogle Scholar
  8. Goins NR et al (1981a) Seismic energy release of the Moon. J Geophys Res 86:378–388ADSCrossRefGoogle Scholar
  9. Goins NR et al (1981b) Lunar seismology: the internal structure of the Moon. J Geophys Res 86:5061–5074ADSCrossRefGoogle Scholar
  10. Hapke B (2001) Space weathering from Mercury to the asteroid belt. J Geophys Res 106(E5):10039–10073ADSCrossRefGoogle Scholar
  11. Heiken G et al (1991) The lunar sourcebook: a user’s guide to the Moon. Lunar and Planetary Institute and Cambridge University PressGoogle Scholar
  12. Jolliff BL (1999) Clementine UVVIS multispectral data and the Apollo 17 landing site: what can we tell and how well? J Geophys Res 104:14123–14148ADSCrossRefGoogle Scholar
  13. Jolliff BL et al (2000) Major lunar crustal terrains: surface expression and crust-mantle origins. J Geophys Res 105(E2):4197–4216ADSCrossRefGoogle Scholar
  14. Jolliff BL et al. (2006) New views of the Moon. Rev Mineral Chem 60Google Scholar
  15. Khan A, Mosegaard K (2002) An inquiry into the lunar interior: A non-linear inversion of the Apollo lunar seismic data. J Geophys Res 107, E6, 5036, pp 3-1–3-14Google Scholar
  16. Khan A et al (2007) Joint inversion of seismic and gravity data for lunar composition and thermal state. Geophys J Int 168:243–258ADSCrossRefGoogle Scholar
  17. Lawrence DJ et al (1998) Global elemental maps of the Moon: the lunar prospector gamma-ray spectrometer. Science 281(5382):1484–1489ADSCrossRefGoogle Scholar
  18. Lucey PG et al (1995) Abundance and distribution of iron on the Moon. Science 268:1150–1153ADSCrossRefGoogle Scholar
  19. Lucey PG et al (1998) Mapping the FeO and TiO2 content of the lunar surface with multispectral imagery. J Geophys Res 103(E2):3679–3699ADSCrossRefGoogle Scholar
  20. Lucey P et al (2006) Understanding the lunar surface and space-Moon interactions, new views of the Moon. Rev Mineral Chem 60:83–219CrossRefGoogle Scholar
  21. Lunar Exploration Working Group (LExSWG) (1992) A planetary science strategy for the Moon. NASA, Solar System Exploration Division, Lyndon B Johnson Space Center Publication JSC – 25920Google Scholar
  22. McCord TB, Johnson TV (1970) Lunar spectral reflectivity (0.30 to 2.50 microns) and implications for remote mineralogical analysis. Science 169:855–858ADSCrossRefGoogle Scholar
  23. Nakamura Y (2003) New identification of deep moonquakes in the Apollo lunar seismic data. Phys Earth Inter 139:197–205ADSCrossRefGoogle Scholar
  24. Nakamura Y (2005) Farside deep moonquakes and deep interior of the Moon. J Geophys Res 110:E01001ADSGoogle Scholar
  25. Nakamura Y, John A, Katherine G (2010) Seismology on the Moon – past, present and future. Ground-based geophysics on the Moon, #3005Google Scholar
  26. Nakamura Y, Koyama J (1982) Seismic Q of the lunar upper mantle. J Geophys Res 87:4855–4861ADSCrossRefGoogle Scholar
  27. Neal CR, Taylor LA (1992) Petrogenesis of mare basalts: a record of lunar volcanism. Geochim Cosmochim Acta 56:2177–2211ADSCrossRefGoogle Scholar
  28. Neukum G, Ivanov BA (1994) Crater size distributions and impact probabilities on Earth from lunar, terrestrial-planet, and asteroid cratering data. In book: Hazards due to comets and asteroids, pp 359–416Google Scholar
  29. Ono T et al (2009) Lunar radar sounder observation of subsurface layers under the nearside maria of Moon. Science 323(5916):909–912ADSCrossRefGoogle Scholar
  30. Papike JJ (ed) (1998) Planetary materials. Rev Mineral 36. Mineralogical Society of AmericaGoogle Scholar
  31. Peeples WJ et al (1978) Orbital radar evidence for lunar subsurface layering in Maria Serenitatis and Crisium. J Geophys Res 83(B7):3459–3468ADSCrossRefGoogle Scholar
  32. Pieters CM et al (2000) Space weathering on airless bodies: resolving a mystery with lunar samples. Meteorit Planet Sci 32(5):1101–1107ADSCrossRefGoogle Scholar
  33. Sharpton VL, Head JW (1982) Stratigraphy and structural evolution of southern Mare Serenitatis: a reinterpretation based on Apollo lunar sounder experiment data. J Geophys Res 87(B13):10983–10998ADSCrossRefGoogle Scholar
  34. Spudis P, Pieters C (1991) Global and regional data about the Moon. In: Lunar Sourcebook: A User’s Guide to the Moon. Heiken GH, Vaniman DT, French BM (eds), Cambridge University Press, p 595–632 Google Scholar
  35. Stöffler D, Ryder G (2001) Stratigraphy and isotope ages of lunar geologic units: chronological standard for the inner solar system. In: Kallenbach R, Geiss J, Hartmann WK (eds) Chronology and evolution of Mars, Space science series of ISSI. Kluwer, Dordrecht. Space Sci Rev 96:9–54Google Scholar
  36. Stöffler D et al (1980) Recommended classification and nomenclature of lunar highland rock – a committee report. In: Papike JJ, Merrill RB (eds) Proceedings of the conference on the lunar highland crust. Pergamon Press, New York, pp 51–70Google Scholar
  37. Taylor SR (1982) Planetary science, a lunar perspective. Lunar and Planetary Inst, HoustonGoogle Scholar
  38. Wieczoreck MA, et al (2006) The constitution and structure of the lunar interior, New views of the Moon. Rev Mineral Geochem 60:254–326Google Scholar
  39. Wieczoreck MA et al (2013) The crust of the Moon as seen by GRAIL. Science 339(6120):671–675ADSCrossRefGoogle Scholar
  40. Wilhelms DE (1987) The geologic history of the Moon. U. S. Geological Survey Professional Paper 1348Google Scholar
  41. Yang H, Zhao W (2015) Improved views of the Moon in the early twenty first century: a review. Earth Moon Planet 114:101–135ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chinese Academy of Geological SciencesBeijingChina