Skip to main content

Fluid Catalytic Cracking (FCC) in Petroleum Refining

  • Living reference work entry
  • First Online:
Handbook of Petroleum Processing

Abstract

The catalytic cracking process, commercialized in 1942, has undergone numerous changes. It is the most important refinery process in that it converts the heavy portion of the crude barrel into transportation fuels. The main changes in catalysts, equipment and operations are covered along with the versatility of the process to handle a wide variety of feeds and produce the desired products. The FCCU is the bridge between refining and petrochemicals and the new FCC processes that fill this gap are presented here.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Additives play important role in FCC development. Oil Gas J. 50–52 (1991). 23 Sept 1991

    Google Scholar 

  • Advanced catalytic olefins (ACO), in KBR Technical Brochure (2013)

    Google Scholar 

  • Advanced control and information systems 2001, Hydrocarb. Process. 102

    Google Scholar 

  • American Chemical Society, in The Fluid Bed Reactor (1998)

    Google Scholar 

  • S.V. Anderson, Improved FCCU feed and catalyst contact. Pet. Technol. Q, Spring, 55–59 (1999)

    Google Scholar 

  • R. D’Aquino, Refiners get cracking on petrochemicals. Chem. Eng. 106, 30–33 (1999)

    Google Scholar 

  • L.R. Anderson, H.S. Kim, T.G. Park, H.J. Ryu, S.J. Jung, Operations adjustments can better catalyst cooler operations. Oil Gas J 97, 53–56 (1999)

    Google Scholar 

  • A.A. Avidan, M. Edwards, H. Owen, Innovative improvements highlight FCC’s past and future. Oil Gas J. 33–58 (1990a)

    Google Scholar 

  • A.A. Avidan, F.J. Krambeck, H. Owen, P.H. Schipper, FCC closed-cyclone system eliminates post riser cracking. Oil Gas J. 56–62 (1990b)

    Google Scholar 

  • P.H. Barnes, Tutorial: basic process principles of residue cat-cracking, in AIChE, 1998 Spring National Meeting, New Orleans, 8–12 Mar 1998

    Google Scholar 

  • S. Benton, Advanced technology for increasing LPG and propylene production, in 2nd Bottom of the Barrel Technology Conference (BBTC 2002), Istanbul, Turkey, 8–9 Oct 2002

    Google Scholar 

  • D. Bhattacharyya, Convert resid to petrochemicals, in International Conference on Refining Challenges and Way Forward, New Delhi, 16–17 Apr 2012

    Google Scholar 

  • M.G. Bienstock, D.C. Draemel, P.K. Ladiwig, R.D. Patel, P.H. Maher, A history of FCC process improvement through technology development and application, in AIChE Spring Meeting, Houston, 28 Mar–1 Apr 1993

    Google Scholar 

  • C.A. Cabrera, Recent innovations UOP RCC/FCC technology, Katalistiks Technology Seminar, New Orleans, 15 Dec 1988

    Google Scholar 

  • R.J. Campagna, A.S. Krishna, Advances in resid cracking technology, in Katalisticks 5th Annual FCC Symposium, 23–24 May 1984

    Google Scholar 

  • I.B. Cetinkaya, UOP PetroFCC process, in Grace Refining Seminary, (Singapore), 18–20 Sept 2002

    Google Scholar 

  • I.B. Cetinkaya, Plug flow vented riser. U.S. Patent 5,449,497

    Google Scholar 

  • L. Chapin, W. Letzsch, D. Dharia, Deep catalytic cracking for petrochemical and refining application, in Proceedings Petrotech–95, India, 1995

    Google Scholar 

  • L.E. Chapin, W.S. Letzsch, T.E. Swaty, Petrochemical options from deep catalytic cracking and the FCCU. Harts Fuel Technol. Manag. 30–33 (1998)

    Google Scholar 

  • Y.-M. Chen, D. Brosten, A new technology for reducing NOx emissions from FCC regenerators, in NPRA Annual Meeting, Paper AM-08-16

    Google Scholar 

  • Y. Chen et al., Stripper technology – how to get more profits from FCC units, in NPRA Annual Meeting, Mar 2005

    Google Scholar 

  • Y. Chen et al., U.S. Patent 5,979,799

    Google Scholar 

  • Complete combustion of CO in cracking process. Chem. Eng. (1975)

    Google Scholar 

  • K. Couch, FCC propylene production technology integrations to optimize yields, in Grace 13th European Technology Conference, Rome, 4–7 Sept 2007

    Google Scholar 

  • B. Dahlstrom, K. Ham, M. Becker, T. Hum, L. Lacijan, T. Lorsbach, FCC reactor revamp project execution and benefits, in NPRA Annual Meeting, paper AM-96-28

    Google Scholar 

  • R. Dean, J.-L. Mauleon, W. Letzsch, Resid puts FCC process in new perspective. Oil Gas J. (1982a)

    Google Scholar 

  • R. Dean, J.-L. Mauleon, W. Letzsch, Total introduces new FCC process. Oil Gas J. 80, 168 (1982b)

    Google Scholar 

  • D. Decroocq, Catalytic Cracking of Heavy Petroleum Fractions (Editions Technip, IFP, Paris, 1984)

    Google Scholar 

  • E.J. Demmel, H. Owen, U.S. Patent 3,791,962

    Google Scholar 

  • Exxon Research and Engineering Company, Flexicracking IIIR State-of-the-Art Cat Cracking Commercial Brochure, Lummus Engr

    Google Scholar 

  • A. Fu, D. Hunt, J.A. Bonilla, A. Batachari, Deep catalytic cracking plant produces propylene in Thailand. Oil Gas J. 96, 49–53 (1998). 1/12/98

    Google Scholar 

  • FCC as resid processing option, in Indian Oil R&D Technical Presentation (2012)

    Google Scholar 

  • Fluid catalytic cracking technology, in KBR Technical Brochure (2013)

    Google Scholar 

  • Y. Gao, C. Xie, Z. Li, DCC update and its commercial experiences, in 5th Stone and Webster/Axens FCC Forum, May 2002

    Google Scholar 

  • W. Gilbert, C.A. Baptista, A.R. Pinho, Exploring FCC flexibility to produce mid-distillate and petrochemicals. ACS Div. Petr. Chem. 51(2), 417–420 (2006)

    Google Scholar 

  • P.E. Glasgow, A.A. Murcia, Process and mechanical design considerations for FCC regeneration air distributors, in Katalistiks 5th FCC Symposium, Vienna Austria, May 1984

    Google Scholar 

  • R.J. Glendinning, H.L. MCQuiston, T.Y. Chan, Implement new advances in FCC process technology. Fuel Reformulation 3/4, (45–53) (1995)

    Google Scholar 

  • R.J. Glendinning, H.L. McQuiston, T.Y. Chan, New Developments in FCC Process Technology

    Google Scholar 

  • J. Haruch, U.S. Patent 5,673,859, Lummus Brochure

    Google Scholar 

  • C.L. Hemler, FCC Historical Perspective and Major Process Changes, CFB-4 FCC Tutorial (1993)

    Google Scholar 

  • C.L. Hemler, D.A. Lomas, D.G. Tajbi, FCCU reflects technological response to resid cracking. Oil Gas J. 82, 79–86 (1984)

    Google Scholar 

  • B.W. Hewrick, J.P. Koebel, I.B. Cetinkaya, Improved catalyst stripping from cold flow modeling. PTQ Autumn, 87–95 (2002)

    Google Scholar 

  • J.M. Houdek, J Anderson, Market Trends and opportunities in petrochemical propylene production, in NPRA Annual Meeting, AM-05-58

    Google Scholar 

  • R. Hu et al., Effect of hydrocarbon partial pressure on propylene production in the FCCU. Catalagram 103, 21–30 (2008)

    Google Scholar 

  • D. Hunt et al., Implementation of state of the art FCC technology for improved reliability, in AFPM Annual Meeting, AM-14-28, 23–25 Mar 2014

    Google Scholar 

  • G.E. Jacobs, C. Santner, W. Letzsch, Regenerator design to minimize catalyst deactivation and reduce emissions, in NPRA Annual Meeting, AM-08-18, San Diego, Mar 2008

    Google Scholar 

  • D.L. Johnson, FCC Catalyst Stripper, Int. Patent WO96/04353

    Google Scholar 

  • T.E. Johnson, Improve regenerator heat removal. Hydrocarbon Processing 55–57 (1991)

    Google Scholar 

  • T.E. Johnson, R.K. Miller, New developments in resid FCC technology. Paper presented at the Institute for International Research, Singapore, 9–10 May 1994

    Google Scholar 

  • F.H.H. Khouw, M.J.P. C. Nieskens, M.J.H. Borley, K.H.W. Roebschlaeger, The shell residue fluid catalytic cracking process commercial experience and future developments, in NPRA Annual Meeting, Paper AM-90-42

    Google Scholar 

  • J. Knight, R. Mehlberg, Maximize propylene from your FCC unit. Hydrocarbon Processing reprint, (2011)

    Google Scholar 

  • K.V Krikorian, J.C. Brice, FCC’s effect on refinery yields. Hydrocarb. Process. 63–66 (Sept 1987)

    Google Scholar 

  • A.S. Krishna, C.R. Hsieh, A.R. English, T.A. Pecoraro, C.W. Cuehler, Additives improve FCC process. Hydrocarb. Process. 70, 59–66 (1991)

    Google Scholar 

  • C. Leckenbach, A.C. Worley, A.D. Reichle, E.M. Gladrow, Cracking-catalytic, in Encyclopedia of Chemical Processing and Design, vol 13 (Marcel Dekker, New York), pp. 1–133

    Google Scholar 

  • W.S. Letzsch, Controlling FCCU dilute phase reactions. PTQ Q2. 49–53 (2005)

    Google Scholar 

  • W.S. Letzsch, Fluid catalytic cracking in the new millennium, in NPRA Annual Meeting, Paper AM-99-15

    Google Scholar 

  • W.S. Letzsch, P.A. Minton, FCC revamps. Hydrocarb. Eng. 32–35 (2000)

    Google Scholar 

  • W. Letzsch, R. Blinkhorn, Maintaining the reliability of the FCC unit. PTQ 8, 1–6 (2003)

    Google Scholar 

  • W. Letzsch, D. Lawler, Processing resid through FCCUs. PTQ Q2 11, 65–69 (2006)

    Google Scholar 

  • W. Letzsch, J.-L. Mauleon, G. Jones, R. Dean, Advanced residual fluid catalytic cracking, in Katalistiks 4th Annual FCC Symposium, Amsterdam, May 1983

    Google Scholar 

  • W. Letzsch, C. Santner, S. Tragesser, More than 60 ways to improve your FCC operation, in NPRA Annual Meeting, AM-09-70, San Antonio, Mar 2009

    Google Scholar 

  • W. Letzsch, K. Peccatiello, M. Tibbits, Evolution of residual FCC technology, in NPRA Annual Meeting, Paper AM-07-34

    Google Scholar 

  • W.S. Letzsch, D.J. Dharia, W.H. Wallendorf, J.L. Ross, FCC modifications and their impact on yields and economics, in NPRA Annual Meeting, Paper AM-96-44

    Google Scholar 

  • W.S. Letzsch, D. Dharia, J.L. Ross, The future of catalytic cracking, in NPRA Annual Meeting, Paper AM-97-65

    Google Scholar 

  • Z.T. Li, W.Y. Shi, R.N. Pan, F.K. Jiang, DCC flexibility for isoolefins production, in American Chemical Society 206th National Meeting, Chicago, 22–27 Aug 1993

    Google Scholar 

  • M. Lippman, Innovative technology to improve FCC flexibility, in AFPM Annual Meeting, AM-12-26, San Diego, Mar 2012

    Google Scholar 

  • J.S. Magee, M.M. Mitchell Jr., Fluid Catalytic Cracking Science and Technology (Elsevier, Amsterdam, 1993)

    Google Scholar 

  • C.R. Marcilly, R.R. Bonifay, Catalytic cracking of resid feedstocks. Arab. J. Sci. Technol. 21(48), 627–651 (1996)

    Google Scholar 

  • J. L. Mauleon, J. C. Courcelle, FCC heat balance critical for heavy fuels. Oil Gas J. 64–70 (1985)

    Google Scholar 

  • J.L. Mauleon, J.B. Sigaud, Mix temperature control enhances FCC flexibility in use of wider range of feeds. Oil Gas J. 85, 52–55 (1987)

    Google Scholar 

  • S.J. McCarthy, M.F. Raterman, C.G. Smalley, J.F. Sodomin, R.B. Miller, FCC technology upgrades: a commercial example, in NPRA Annual Meeting, Paper AM-97-10

    Google Scholar 

  • R.A. Meyers, Handbook of Petroleum Refining Processes, 2nd edn. (McGraw-Hill, New York, 1996). Chapters 3 thru 7

    Google Scholar 

  • R. Miller, FCC’s role in refinery-petrochemical integration, in Grace Refining Technology Conference, Singapore, 18–20 Sept 2002

    Google Scholar 

  • R. Miller, Y.-L. Yang, E. Gbordzoe, D.L. Johnson, T. Mallo, New developments in FCC feed injection and stripping technologies, in NPRA Annual Meeting, Paper AM-00-08

    Google Scholar 

  • J.R. Murphy, Designs for heat removal in HOC operations, in Petroleum Refining Conference, JPI, Tokyo, Oct 1986

    Google Scholar 

  • J.R. Murphy, Evolutionary design changes mark FCC process. Oil Gas J. 18, 49–58 (1992)

    Google Scholar 

  • P. Niccum, Maximizing diesel production in the FCC-centered refinery, in AFPF Annual Meeting, AM-12-43, San Diego, Mar 2012

    Google Scholar 

  • P.K. Niccum, M.J. Tallman, D.H. Grittman, KBR catalytic olefins technologies provide refinery/petrochemical balance, in 25th JPI Petroleum Refining Conference, Tokyo, 26–27 Oct 2010

    Google Scholar 

  • P.K. Niccum et al., Maxofin: a novel FCC process for maximizing light olefins using a new generation of ZSM-5 additive, in NPRA Annual Meeting, Paper AM-98-18

    Google Scholar 

  • P.K. Niccum et al., Future refinery-FCC’s role in refinery/petrochemical integration, in NPRA Annual Meeting, Paper AM-01-61

    Google Scholar 

  • M. Nieskens, Milos-Shell’s ultimate flexible FCC technology in delivering diesel/propylene, in NPRA Annual Meeting, Paper AM-08-54

    Google Scholar 

  • M.J.P.C. Nieskens, F.H.H. Khouw, M.J.H. Barley, K.H.W. Roebschlaeger, Shell’s resid FCC technology reflects evolutionary development. Oil Gas J. 37, 37–44 (1990)

    Google Scholar 

  • W.L. Pierce, D.F. Ryan, R.P. Souther, T.G. Kaufmann, Innovations in flexicracking, in API Div. of Refining 37th Midyear Meeting, New York, 10 May 1972

    Google Scholar 

  • A. Pinho, P.P. Neto, J.G.F. Ramos, J.A.M. Castillero, Double riser FCC: an opportunity for the petrochemical industry, in NPRA Annual Meeting, Paper AM-06-13

    Google Scholar 

  • Propylene or diesel fuel? Just change the controls. Chem. Eng. 20 (2008)

    Google Scholar 

  • J.A. Rabo, Zeolite chemistry and catalysis, in ACS Monograph 171, ed. by J.S. Magee, J.J. Blazek, Chapter 11, Preparation and Performance of Zeolite Cracking Catalysts (1979)

    Google Scholar 

  • M.F. Raterman, U.S. Patent 5, 409,872

    Google Scholar 

  • J. Ross FCC Technology Seminar Technip/Axens, San Francisco, (2013)

    Google Scholar 

  • R.E. Ritter, J.C. Creighton, D.S. Chin, T.G. Roberie, C.C. Wear, Catalytic octane from the FCC, Grace Catalagram. No. 74 (1986)

    Google Scholar 

  • C.Y. Sabottke, Eur. Patent 0444860A1

    Google Scholar 

  • A.V. Sapre, P.H. Schipper, F.P. Petrocelli, Design methods for FCC feed atomization, in AIChE Symposium Series, vol 88, pp. 103–109

    Google Scholar 

  • P.R. Satbhai, J.M.H. Dirkx, R.J. Higgins, P.D.L. Mercera, Best practices in shell FCC units, in Akzo Nobel Catalyst Seminar, Mumbai, India, Oct 1998

    Google Scholar 

  • M.W. Schnaith, D.A. Kauff, Resid FCC regenerators: technology options and experience, in NPRA Annual Meeting, Paper AM-97-13

    Google Scholar 

  • M.W. Schnaith, A.T. Gilbert, D.A. Lomas, D.N. Myers, Advances in FCC reactor technology, in NPRA Annual Meeting, Paper AM-95-36

    Google Scholar 

  • A.G. Shaffer Jr., C.L. Hemler, Seven years of operation prove RCC capability. Oil Gas J. 62–70 (1990)

    Google Scholar 

  • W. Shi, C. Xie, Y. Huo, X. Zhong, DCC family technology for producing light olefins from heavy oils. Chin. Petr. Process. Petrochem. Technol. 2, 15–21 (2001)

    Google Scholar 

  • D. Soni, Next generation stripper design commercialized, in Lummus Paper (2007)

    Google Scholar 

  • D. Soni et al., Maximize olefins through catalytic cracking Indmax FCC process (2008). www.digitalrefining.com/article/1000205

  • A.M. Squires, Circulating Fluidized Bed Technology, in The Study of Fluid Catalytic Cracking: The First Circulating Fluid Bed

    Google Scholar 

  • J. Stell, Worldwide catalyst report. Oil Gas J. 56–76 (2001)

    Google Scholar 

  • Superflex, in KBR Technical Brochure (2013)

    Google Scholar 

  • M.J. Tallman, C. Eng, Catalytic routes to olefins, in Grace European Technical Conference, Rome, 4–7 Sept 2007

    Google Scholar 

  • M.J. Tallman, C.N. Eng, Propylene on purpose. Hydrocarb. Eng. (2010)

    Google Scholar 

  • M.J. Tallman et al., Advanced Catalytic Olefins (ACO): first commercial demonstration unit begins operations, in AICHE Spring National Meeting, Chicago, 14–17 Mar 2011, p. 74b

    Google Scholar 

  • A.K. Rhodes, Number of catalyst formulations stable in a tough market. Oil Gas J. 95, 41–72 (1997)

    Google Scholar 

  • L.L. Upson, H.V.D. Zwan, Promoted combustion improves FCCU flexibility. Oil Gas J. 85, 65–70 (1987)

    Google Scholar 

  • I.A. Vasalos, E.R. Strong, C.K.R. Hsieh, G.J. D’Souza, New cracking process controls FCCU SOX. Oil Gas J. 75, 141–148 (1977)

    Google Scholar 

  • P.B. Venuto, E.T. Habib Jr., Fluid Catalytic Cracking with Zeolite Catalysts (Marcel Dekker, Boca Raton, 1979)

    Google Scholar 

  • P. Walker, R. Peterman, RFCC units set new standard for propylene production. PTQ Q4, 83–92 (2012)

    Google Scholar 

  • C.C. Wear, R.W. Mott, FCC catalysts can be designed and selected for optimum performance. Oil Gas J. 71–79 (1988)

    Google Scholar 

  • J.W. Wilson, Modernizing older FCCU’s, in NPRA Annual Meeting, Paper AM-00-09

    Google Scholar 

  • J.W. Wilson, First Stone and Webster/ IFP Licensors’ Forum (Osaka Revamp) (1994)

    Google Scholar 

  • J.W. Wilson, Fluid Catalytic Cracking Technology and Operation (Pennwell, Tulsa, 1997)

    Google Scholar 

  • E.G. Wollaston, W.J. Haflin, W.D. Ford, G.J. D’Souza, FCC model valuable operating tool. Oil Gas J. 87, 87–94 (1975). 9/22/75

    Google Scholar 

  • L. Wolschlag, K. Couch, UOP FCC design advancements to reduce energy consumption and CO2 emissions, in NPRA Annual Meeting, AM-09-35, San Antonio, Mar 2009

    Google Scholar 

  • L. Wolschlag, K. Couch, UOP FCC innovations developed using sophisticated engineer tools, in NPRA Annual Meeting, AM-10-109, Phoenix, Mar 2010

    Google Scholar 

  • R.E. Wrench, P.C. Glasgow, FCC hardware options for the modern Cat cracker, in AIChE National Meeting, Los Angeles, 17–22 Nov 1991, Paper 125C

    Google Scholar 

  • L.C. Yen, R.E. Wrench, A.S. Ong, Reaction kinetic correlation equation predicts fluid catalytic cracking coke yield. Oil Gas J. 86, 67–70 (1988)

    Google Scholar 

  • O.J. Zandona, W.P. Hettinger Jr., L.E. Busch, Reduced crude processing with Ashland’s RCC process, in API 47th Midyear Refining Meeting, New York, 13 May 1982

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Warren Letzsch .

Editor information

Editors and Affiliations

Appendix 1: Commercially Available FCC Catalysts and Additives

Appendix 1: Commercially Available FCC Catalysts and Additives

Note: All catalysts are microspheres with densities from 0.70 to 0.90 g/cc. Matrix binders are silica or aluminum sols or silica-alumina. Clays and other aluminas are added.

Feedstocks

Products

GO

Gas oils

MDG

Minimum dry gas

R

Resids

MLPG

Maximum LPG

HN

High nitrogen

MG

Maximum gasoline

HNR

High-nickel resid

MLCO

Maximum LCO

HR

Heavy resid

MBC

Maximum bottom cracking

HT GO

Hydrotreated GO

MO

Maximum octane

A

All

MC

Minimum coke

MLY

Maximum liquid yields

MOB

Maximum octane barrels

MIO

Maximum iso-olefins

MC3=

Maximum propylene

MC4=

Maximum butylenes

Albemarle

Applications

Catalyst name

Feedstocks

Products

Product features

Action

A

MOB, MLCO, MDG

C4= zeolite, high accessibility

Action T

A

MOB, MLCO, MDG

Same as action, tight oil feeds

AFX

A

MC3=, MBC

C3= zeolite, high accessibility

Amber

GO, HN

MG, MLCO, MBC

Moderate Z and matrix, high access.

Amber MD

GO, HN

MLCO, MBO

High matrix, high access.

Amber T

GO, HN

MG, MLCO, MBC

Amber designed for tight oil

Amber LRT

GO, HN

MG, MLCO, MBC

Mod. Z and M, high access., low RE

Coral

HN, all Rs

MC, MDG, MLY

Low coke, metal tol., higher Z

Coral SMR

HN, all Rs

MC, MDG, MLY

Low coke, xtr metal tol., higher Z

GO-ULTRA

GO, HN

MG, MC

Coke and gaso. select., mod. to hi. Z

GO-LRT

GO, HN

MG, MC

Low RE version of GO-ULTRA

RUBY

GO, HN

MLY, MC

Coke sel., mod. to hi. Z

R-ULTRA

HN, all Rs

MC, MDG, MBC

Coke sel. matrix, metal tol.

Upgrader

HN, all Rs

MCB, MG, MLCO

Hi. M, hi. access., metal tol.

Upgrader versions for lower coke, max. diesel, tight oils, and low RE are also offered

LE to all catalysts, low emissions

Sinopec Catalysts Research Institute of Petroleum Processing (RIPP)

Applications

Catalyst name

Feedstocks

Products

Product features

CDOS/RICC-1

R

MLY, MBC

Low coke, high cat stability

DMMC-1

GO, HT GO

MLPG, MC3=

Produces petrochemical feeds

CIP-2

GO, R

MLY, MLPG

Metal tol. and high stability

GOR

GO, R

MC, MBC, MLY

Metal tol. and high stability, low gasoline olefins, min. ON loss

HGY

HR, R

MG, MLY

Metal tol., high stability, low olefinic gasoline, high RON

MLC-500

A

MBC, MLCO

Low coke, metal tol., high stability

CGP-1

A

MBC, MLY

High C3=, min. coke, high stability

Davison, W. R. Grace and Co.

Applications

Catalyst name

Feedstocks

Products

Product features

Achieve

R, GO

MG, MLCO

Pore structure for metals

Alcyon

GO, HT GO

MG

Max activity

Aurora

GO, HT GO

MG

Attrition resistance

DieseliseR

GO, HT GO

MLCO

Spec. pore structure

Genesis

GO, HT GO, R

MG, MLCO

Low coke, high bottom conv.

Impact

R

MG

Mi metals resist., low coke and gas

Midas

GO, HT GO, R

MLY, MBC

High mesopores, sel. bottom conv.

NaceR

GO, HT GO

MLCO

Mod. matrix acidity, opt. delta coke

Nadius

GO, HT GO

MG

High activity and stability

Nektor

R

MG, MLCO, MC3=

High metal pass., low coke and gas

PMC

GO, HT GO, R

MC3=

Good for most feeds

ProtAgon

GO, HT GO

MC3=

Low coke and gas, Y and ZSM-5 zeolites

ReplaceR

GO, HT GO, R

MG,MLCO, MC3=

Low or no RE catalysts

ResidCrackeR

R

MG, MLCO

Max resid conv., high bottom cracking

SuRCA

GO, HT GO, R

MG, MLY

Gasoline sulfur reduction

BASF

Applications

Catalyst name

Feedstocks

Products

Product features

PetroMax

GO

MCON

High matrix act., max. conv.

NaphthaMax

GO

MCON, MBC, MC

Low coke, good bottom cracking

NaphthaMax II

GO

MCON, MBC, MC

Improved selectivity

NaphthaMax III

GO

MCON, MBC, MC

Max. olefins, low delta coke

HDXtra

GO

MLCO

Low hydrogen transfer

Flex-Tec

R

MCON, MBC, MC

Heavy resids

Defender

R

MCON, MC

Vanadium tolerance

Endurance

R

MCON

Light and hydrotreated resids

Stamina

HR

MLCO, MDG, MBC

Heavy resid, hi. metal resis.

Aegis

R

MCON, MLCO, MC

Metal tolerance, better yields

Fortress

HNR

MCON, MDG, MC, MBC

Improved metal passivation vs. Flex-Tec

BituPro

GO, R

MCON, MLCO

Bitumen feedstocks

Converter

GO

MCON, NBC

Cocatalyst, conv. enhance

HDUltra

GO

MLCO

Cocatalyst for LCO

HDUltra-R

R

MLCO

Cocatalyst for LCO with R

MPS

GO

MLPG, MLY

Max. C3= with ZSM-5

NaphthaClean

GO

MCON

Max. gasoline

FCC additives

 

Product name

Comments

Flue gas SOx reduction

Albemarle

KDSOx

Standard

DuraSOx

Max. act., min. dilution

SOxMaster-2

Zero RE

W.R. Grace

DESOX

 

DESOX OCI

BASF

EnviroSOX

 

Sinopec

RFS-C

 

Intercat

Super SOxGetter

Full burn units

Super SOxGetter II

Full burn, low RE

Super SOxGetter II DM

Middle distillate mode

Super SOxGetter III

Lowest RE content

LoSOx-PB Plus

Part. burn and 2 stg units

LoSOx Special

Units with scrubbers

Flue gas NOx reduction

Albemarle

ELIMINOx

Non-Pt based

InsituPro-2

Max. non-Pt dispersion

W.R. Grace

DeNOx

 

Intercat

NOxGetter

Reduce NOx and HCN

NoNOx

BASF

CLEANOx

 

Gasoline sulfur reduction

W.R. Grace

GSR 5

 

d-PriSM

BASF

LSA

Gasoline vol. expansion

Intercat

LGS series

 

Sinopec

MS011

 

Metal passivation

Albemarle

BCMT-500

Hi. access. and matrix SA

BCMT-LRT

Same but low RE

Intercat

Cat-Aid

V and Fe trapping

Nalco

Nickel passivation

Antimony

Fluidization aid

Albemarle

Smoothflow

Fine part. size dist

HACTifine

High act., fine PSD

Intercat

FloCAT

 

BASF

EZ Flow/EZ Flow Plus

 

Bottom cracking

 

Comments

Albemarle

BCMT-500

High matrix, metal tol.

BCMT-LRT

Same but low RE

Intercat

BCA-105

Diesel maximization

Octane (pentasil-containing products)

Albemarle

DuraZOOM

Max. LPG olefins, ONs

IsoZOOM

High C4=, high ONs

OCTUP-3

W.R. Grace

OlefinsMax

High sieve content

OlefinsUltra

OlefinsUltra HZ

BASF

ZIP

Max. activity for lt. olefins and octanes

MOA

Lt. olefins and octanes

Sinopec

MP051

Higher C3=

Intercat

PENTA-CAT

Moderate to low activity

Z-CAT HP

Moderate act. for ON and C3=

Super Z

High activity

Super Z Excel

High act., maximum C3=

Super Z Exceed

Higher activity for C3=

PropylMax

High C3= yield with in situ gasoline olefin make

ISOCAT

Octane with low LPG

OCTAMAX

Octane with minimum LPG

ZMZ

Butylene selective

ZMX-C HP

Low LPG

 

Product name

Comments

CO promoters

Albemarle

KOC-15

Pt based

InsituPro

Max. Pt dispersion

ELIMINO

Non-Pt based

InsituPro-2

Max non-Pt dispersion

W.R. Grace

CP3, CP5

Pt for CO control

CP P, XNOx W

Low NOx

Intercat

COP-NP, COP-NP II

Low NOx

COP-250, 375, 555, 850

Pt levels on promoters

BASF

COnquer

Minimum NOx

USP/PROCAT

Pt based

Flush catalyst

W.R. Grace

ENCORE

Ecat for high metals

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this entry

Cite this entry

Letzsch, W. (2014). Fluid Catalytic Cracking (FCC) in Petroleum Refining. In: Treese, S., Jones, D., Pujado, P. (eds) Handbook of Petroleum Processing. Springer, Cham. https://doi.org/10.1007/978-3-319-05545-9_2-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-05545-9_2-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-05545-9

  • eBook Packages: Springer Reference EnergyReference Module Computer Science and Engineering

Publish with us

Policies and ethics