Advertisement

Positive Inotropic Activity (Cardiac Glycosides)

  • Michael Gralinski
  • Liomar A. A. Neves
  • Olga Tiniakova
Reference work entry

Abstract

Biological standardization of cardiac glycosides was necessary as long as the drugs used in therapy were plant extracts or mixtures of various glycosides. They were standardized in units of an international standard. Some of the pharmacological methods used for these purposes and adopted by many pharmacopoeias have nowadays historical interest only. This holds true for the frog method and the pigeon method (Burn et al. 1950).

Keywords

Papillary Muscle Cardiac Glycoside Inotropic Agent Ouabain Binding Moderate Heart Failure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

General Considerations

  1. Bahrmann H, Greeff K (1981) Evaluation of cardiac glycosides in the intact animal. In: Handbook of experimental pharmacology, vol 56/I. Springer, Berlin/Heidelberg/New York, pp 118–152Google Scholar
  2. Burn JH, Finney DJ, Goodwin LG (1950) Digitalis, strophanthus, and squill. In: Biological standardization. Oxford University Press, London/New York/Toronto, pp 294–310. Chapter XIIIGoogle Scholar
  3. Cattell M, Gold H (1938) Influence of digitalis glycosides on the force of contraction of mammalian cardiac muscle. J Pharmacol Exp Ther 62:116–125Google Scholar
  4. de Lind van Wijngaarden C (1926) Untersuchungen über die Wirkungsstärke von Digitalispräparaten. II Mitteilung: Über die Genauigkeit der Dosiseichung an der Katze. Arch Exp Pathol Pharmakol 113:40–58Google Scholar
  5. Di Palma JR (1964) Animal techniques for evaluating digitalis and its derivatives. In: Nodine JH, Siegler PE (eds) Animal and clinical pharmacologic techniques in drug evaluation. Year Book Medical Publishers, Chicago, pp 154–159. Chapter 15Google Scholar
  6. Feldman AM (1993) Classification of positive inotropic agents. J Am Coll Cardiol 22:1223–1227CrossRefPubMedGoogle Scholar
  7. Greef K (1963) Zur Pharmakologie der herzwirksamen Glykoside. Klin Physiol 1:340–370Google Scholar
  8. Greef K, Hafner D (1981) Evaluation of cardiac glycosides in isolated heart preparations other than papillary muscle. In: Handbook of experimental pharmacology, vol 56/I. Springer, Berlin/Heidelberg/New York, pp 161–184Google Scholar
  9. Grupp G (1987) Selective updates on mechanisms of action of positive inotropic agents. Mol Cell Biochem 76:97–112CrossRefPubMedGoogle Scholar
  10. Gundert-Remy U, Weber E (1981) ATPase for the determination of cardiac glycosides. In: Handbook of experimental pharmacology, vol 56/I. Springer, Berlin/Heidelberg/New York, pp 83–94Google Scholar
  11. Hanzlik JP (1929) New method of estimating the potency of digitalis in pigeons: Pigeon emesis. J Pharmacol Exp Ther 35:363–391Google Scholar
  12. Hatcher RA, Brody JG (1910) The biological standardization of drugs. Am J Pharm 82:360–372Google Scholar
  13. Knaffl-Lenz E (1926) The physiological assay of preparations of digitalis. J Pharmacol Exp Ther 29:407–425Google Scholar
  14. Reiter M (1981) The use of the isolated papillary muscle for the evaluation of positive inotropic effects of cardioactive steroids. In: Handbook of experimental pharmacology, vol 56/I. Springer, Berlin/Heidelberg/New York, pp 153–159Google Scholar
  15. Scholz H (1984) Inotropic drugs and their mechanisms of action. J Am Coll Cardiol 4:389–397CrossRefPubMedGoogle Scholar

Ouabain Binding

  1. Erdmann E, Schoner W (1973) Ouabain-receptor interactions in (Na++K+)-ATPase preparations from different tissues and species. Determination of kinetic constants and dissociation constants. Biochim Biophys Acta 307:386–398CrossRefPubMedGoogle Scholar
  2. Erdmann E, Schoner W (1974) Ouabain-receptor interactions in (Na++K+)-ATPase preparations. IV. The molecular structure of different cardioactive steroids and other substances and their affinity to the glycoside receptor. Naunyn Schmiedebergs Arch Pharmacol 283:335–356CrossRefPubMedGoogle Scholar
  3. Erdmann E, Philipp G, Scholz H (1980) Cardiac glycoside receptor, (Na++K+)-ATPase activity and force of contraction in rat heart. Biochem Pharmacol 29:3219–3229Google Scholar
  4. Lelievre LG, Charlemagne D, Mouas C, Swynghedauw B (1986) Respective involvements of high- and low-affinity digitalis receptors in the inotropic response of isolated rat heart to ouabain. Biochem Pharmacol 35:3449–3455Google Scholar
  5. Maixent JM, Charlemagne D, de la Chapelle B, Lelievre LG (1987a) Two Na, K-ATPase isoenzymes in canine cardiac myocytes molecular basis of inotropic and toxic effects of digitalis. J Biol Chem 262:6842–6848PubMedGoogle Scholar
  6. Maixent JM, Gerbi A, Berrebi-Bertrand I, Correa PE, Genain G, Baggioni A (1993) Cordil reversibly inhibits the Na,K-ATPase from outside the cell membrane. Role of K-dependent dephosphorylation. J Recept Res 13:1083–1092Google Scholar

Influence on Na+/K+ ATPase

  1. Anner B, Moosmayer M (1974) Rapid determination of inorganic phosphate in biological systems by a highly sensitive photometric method. Anal Biochem 65:305–309CrossRefGoogle Scholar
  2. Akera T, Brody T (1978) The role of Na+, K+-ATPase in the inotropic action of digitalis. Pharmacol Rev 29:197–201Google Scholar
  3. Belz GG (1981) Rubidium uptake in erythrocytes. In: Handbook of experimental pharmacology, vol 56. Springer, Berlin/Heidelberg/New York, pp 95–113Google Scholar
  4. Borsch-Galetke E, Dransfeld H, Greef K (1972) Specific activity of Na++K+- activated ATPase in rats and guinea pigs with hypoadrenalism. Naunyn-Schmiedebergs Arch Pharmacol 274:74–80CrossRefPubMedGoogle Scholar
  5. Brooker G, Jelliffe RW (1972) Serum cardiac glycoside assay based upon displacement of 3H-ouabain from Na-K ATPase. Circulation 45:20–36CrossRefPubMedGoogle Scholar
  6. Burnett GH, Conklin RL (1968) The enzymatic assay of plasma digitoxin levels. J Lab Clin Med 71:1040–1049PubMedGoogle Scholar
  7. Charlemagne D, Maixent JM, Preteseille M, Lelievre LG (1986) Ouabain binding sites and (Na+, K+)-ATPase activity in rat cardiac hypertrophy. Expression of the neonatal forms. J Biol Chem 261:185–189PubMedGoogle Scholar
  8. Erdmann E, Philipp G, Scholz H (1980) Cardiac glycoside receptor, (Na++K+)-ATPase activity and force of contraction in rat heart. Biochem Pharmacol 29:3219–3229Google Scholar
  9. Gundert-Remy U, Weber E (1981) ATPase for the determination of cardiac glycosides. In: Handbook of experimental pharmacology, vol 56/I. Springer, Berlin/Heidelberg/New York, pp 83–94Google Scholar
  10. Lelievre LG, Maixent G, Lorente P, Mouas C, Charlemagne D, Swynghedauw B (1986) Prolonged responsiveness to ouabain in hypertrophied rat heart: physiological and biochemical evidence. Am J Physiol 250:H923–H931Google Scholar
  11. Lindner E, Schöne HH (1972) Änderungen der Wirkungsdauer und Wirkungsstärke von Herzglykosiden durch Abwandlungen der Zucker. Arzneim Forsch/Drug Res 22:428–435Google Scholar
  12. Lindner E, von Reitzenstein G, Schöne HH (1979) Das 14,15-β-oxido-analoge des proscillaridins (HOE 040). Arzneim Forsch/Drug Res 29:221–226Google Scholar
  13. Lowenstein JM (1965) A method for measuring plasma levels of digitalis glycosides. Circulation 31:228–233CrossRefPubMedGoogle Scholar
  14. Maixent JM, Charlemagne D, de la Chapelle B, Lelievre LG (1987) Two Na,K-ATPase isoenzymes in canine cardiac myocytes. Molecular basis of inotropic and toxic effects of digitalis. J Biol Chem 262:6842–6848Google Scholar
  15. Maixent JM, Fénard S, Kawamoto RM (1991) Tissue localization of Na, K-ATPase isoenzymes by determination of their profile of inhibition with ouabain, digoxin, digitoxigenin and LND 796, a new aminosteroid cardiotonic. J Recept Res 11:687–698PubMedGoogle Scholar
  16. Maixent JM, Gerbi A, Berrebi-Bertrand I, Correa PE, Genain G, Baggioni A (1993) Cordil reversibly inhibits the Na,K-ATPase from outside the cell membrane. Role of K-dependent dephosphorylation. J Recept Res 13:1083–1092Google Scholar
  17. Maixent JM, Gerbi A, Barbey O, Fenard S, Kawamoto RM, Baggioni A (1995) Relation of plasma concentrations to positive inotropic effect of intravenous administration of cordil in dogs. Pharm Pharmacol Lett 1:1–4Google Scholar
  18. Mansier P, Lelievre LG (1982) Ca2+-free perfusion of rat heart reveals a (Na++K+)ATPase form highly sensitive to ouabain. Nature 300:535–537CrossRefPubMedGoogle Scholar
  19. Marcus FI, Ryan JN, Stafford MG (1975) The reactivity of derivatives of digoxin and digitoxin as measured by the Na-K-ATPase displacement assay and by radioimmunoassay. J Lab Clin Med 85:610–620PubMedGoogle Scholar
  20. McConnell HM, Owicki JC, Parce JW, Miller DL, Baxter GT, Wada HG, Pitchford S (1992) The Cytosensor microphysiometer. Science 257:1906–1912CrossRefPubMedGoogle Scholar
  21. Miller DL, Olson JC, Parce JW, Owicki JC (1993) Cholinergic stimulation of the Na+/K+ adenosine triphosphatase as revealed by microphysiometry. Biophys J 64:813–823PubMedCentralCrossRefPubMedGoogle Scholar
  22. Noel F, Godfraind T (1984) Heterogeneity of ouabain specific binding sites and (Na++K+)-ATPase inhibition in microsomes from rat heart. Biochem Pharmacol 33:47–53CrossRefPubMedGoogle Scholar
  23. Schoner W, von Illberg C, Kramer R, Seubert W (1967) On the mechanism of Na+- and K+- stimulated hydrolysis of adenosine triphosphate. Eur J Biochem 1:334–343CrossRefPubMedGoogle Scholar
  24. Schwarz AK, Nagano K, Nakao M, Lindenmayer GE, Allen JC, Matsoi HM (1971) The sodium- and potassium activated adenosine-triphosphatase system. In: Schwartz A (ed) Methods in pharmacology, vol 1. Appleton-Century-Crofts, Meredith Corporation, New York, pp 361–388Google Scholar
  25. Skou JC, Esmann M (1992) The Na2K-ATPase. J Bioenerg Biomembr 24:249–261PubMedGoogle Scholar
  26. Thomas R, Allen J, Pitts BJR, Schwartz A (1974) Cardenolide analogs. An explanation for the unusual properties of AY 22241. Eur J Pharmacol 53:227–237CrossRefGoogle Scholar

Isolated Cat Papillary Muscle

  1. Anderson WG (1983) An improved model for assessment of positive inotropic activity in vitro. Drug Dev Res 3:443–451CrossRefGoogle Scholar
  2. Böhm M, Diet F, Pieske B, Erdmann E (1989) Screening of positive inotropic agents in isolated cardiac preparations from different sources. J Pharmacol Methods 21:33–44CrossRefPubMedGoogle Scholar
  3. Brown TG, Lands AM (1964) Cardiovascular activity of sympathomimetic amines. In: Laurence DR, Bacharach AL (eds) Pharmacometrics, vol 1. Academic, New York, pp 353–368Google Scholar
  4. Cattell M, Gold H (1938) Influence of digitalis glycosides on the force of contraction of mammalian cardiac muscle. J Pharmacol Exp Ther 62:116–125Google Scholar
  5. Di Palma JR (1964) Animal techniques for evaluating digitalis and its derivatives. In: Nodine JH, Siegler PE (eds) Animal and clinical pharmacologic techniques in drug evaluation. Year Book Medical Publishers, Chicago, pp 154–159. Chapter 15Google Scholar
  6. Grupp IL, Grupp G (1984) Isolated heart preparations perfused or superfused with balanced salt solutions. In: Schwartz A (ed) Methods in pharmacology, vol 5: Myocardial biology. Plenum Press, New York/London, pp 111–128CrossRefGoogle Scholar
  7. Labow RS, Desjardins S, Keon WJ (1991) Validation of a human atrial trabecular preparation for evaluation of inotropic substances. J Pharmacol Methods 26:257–268CrossRefPubMedGoogle Scholar
  8. Rajagopalan R, Ghate AV, Subbarayan P, Linz W, Schoelkens BA (1993) Cardiotonic activity of the water soluble forskoline derivative 8,13-epoxy-6β-(piperidinoacetoxy)-1α,7β,9α-trihydroxy-labd-14-en-11-one. Arzneim Forsch/Drug Res 43:313–319Google Scholar
  9. Reiter M (1981) The use of the isolated papillary muscle for the evaluation of positive inotropic effects of cardioactive steroids. In: Handbook of experimental pharmacology, vol 56/I. Springer, Berlin/Heidelberg/New York, pp 153–159Google Scholar
  10. Turner RA (1965) Cardiotonic agents. In: Screening methods in pharmacology. Academic, New York/London, pp 203–209CrossRefGoogle Scholar

Isolated Hamster Cardiomyopathic Heart

  1. Jasmin G, Solymoss B, Proscheck L (1979) Therapeutic trials in hamster dystrophy. Ann NY Acad Sci 317:338–348CrossRefPubMedGoogle Scholar
  2. Ottenweller JE, Tapp WN, Natelson BH (1987) The effect of chronic digitalis therapy on the course of heart failure and on endocrine function in cardiomyopathic hamsters. Res Commun Chem Pathol Pharmacol 58:413–416PubMedGoogle Scholar
  3. Rajagopalan R, Ghate AV, Subbarayan P, Linz W, Schoelkens BA (1993) Cardiotonic activity of the water soluble forskoline derivative 8,13-epoxy-6β-(piperidinoacetoxy)-1α,7β,9α-trihydroxy-labd-14-en-11-one. Arzneim Forsch/Drug Res 43(I):313–319Google Scholar
  4. Weishaar RE, Burrows SD, Kim SN, Kobylarz-Singer DC, Andrews LK, Quade MM, Overhiser R, Kaplan HR (1987) Protection of the failing heart: comparative effects of chronic administration of digitalis and diltiazem on myocardial metabolism in the cardiomyopathic hamster. J Appl Cardiol 2:339–360Google Scholar

Potassium Loss from the Isolated Guinea Pig Heart

  1. Greef K, Hafner D (1981) Evaluation of cardiac glycosides in isolated heart preparations other than papillary muscle. In: Handbook of experimental pharmacology, vol 56/I. Springer, Berlin/Heidelberg/New York, pp 161–184Google Scholar
  2. Lindner E, Hajdu P (1968) Die fortlaufende Messung des Kaliumverlustes des isolierten Herzens zur Bestimmung der Wirkungsstärke digitalisartiger Körper. Arch Int Pharmacodyn 175:365–372PubMedGoogle Scholar

Cardiac Toxicity in Cats (Hatcher’s Method)

  1. Bahrmann H, Greeff K (1981b) Evaluation of cardiac glycosides in the intact animal. In: Handbook of experimental pharmacology, vol 56/I. Springer, Berlin/Heidelberg/New York, pp 118–152Google Scholar
  2. Burn JH, Finney DJ, Goodwin LG (1950) Digitalis, strophanthus, and squill. In: Biological standardization. Oxford University Press, London/New York/Toronto, pp 294–310. Chapter XIIIGoogle Scholar
  3. de Lind van Wijngaarden C (1926) Untersuchungen über die Wirkungsstärke von Digitalispräparaten. II Mitteilung: Über die Genauigkeit der Dosiseichung an der Katze. Arch Exp Pathol Pharmakol 113:40–58Google Scholar
  4. Dörner J (1955) Zur Frage der Beziehungen zwischen Strophanthintoxicität und Größe der Coronardurchblutung. Arch Exp Pathol Pharmakol 226:152–162CrossRefGoogle Scholar
  5. Hatcher RA, Brody JG (1910) The biological standardization of drugs. Am J Pharm 82:360–372Google Scholar
  6. Knaffl-Lenz E (1926) The physiological assay of preparations of digitalis. J Pharmacol Exp Ther 29:407–425Google Scholar

Decay Rate and Enteral Absorption Rate of Cardiac Glycosides

  1. Bahrmann H, Greeff K (1981) Evaluation of cardiac glycosides in the intact animal. In: Handbook of experimental pharmacology, vol 56/I. Springer, Berlin, pp 118–152Google Scholar
  2. Kleemann A, Lindner E, Engel J (1985) Herzglykoside und deren Aglykone. In: Arzneimittel, Fortschritte 1972–1985. Verlag Chemie, Weinheim, pp 213–226Google Scholar
  3. Lindner E, Schöne HH (1972) Änderungen der Wirkungsdauer und Wirkungsstärke von Herzglykosiden durch Abwandlungen der Zucker. Arzneim Forsch/Drug Res 22:428–435Google Scholar
  4. Lindner E, von Reitzenstein G, Schöne HH (1979) Das 14,15-β-oxido-analoge des proscillaridins (HOE 040). Arzneim Forsch/Drug Res 29:221–226Google Scholar
  5. Maixent JM, Bertrand IB, Lelièvre LG, Fénard S (1992) Efficacy and safety of the novel Na+, K + -ATPase inhibitor 20R 14β-amino 3-β-rhamnosyl 5β-pregnan 20β-ol in a dog model of heart failure. Arzneim Forsch/Drug Res 42:1301–1305Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Michael Gralinski
    • 1
  • Liomar A. A. Neves
    • 1
  • Olga Tiniakova
    • 1
  1. 1.CorDynamics, Inc.ChicagoUSA

Personalised recommendations