Skip to main content

Abstract

Cellular calcium flux is regulated by receptor-operated and voltage-dependent channels, which are sensitive to inhibition by calcium entry blockers. The term calcium antagonist was introduced by Fleckenstein (1964, 1967) when two drugs, prenylamine and verapamil, originally found as coronary dilators in the Langendorff experiment, were shown to mimic the cardiac effects of simple Ca2+ withdrawal, diminishing Ca2+-dependent high-energy phosphate utilization, contractile force, and oxygen requirement of the beating heart without impairing the Na+-dependent action potential parameters. These effects were clearly distinguishable from β-receptor blockade and could promptly be neutralized by elevated Ca2+, β-adrenergic catecholamines, or cardiac glycosides, measures that restore the Ca2+ supply to the contractile system. In the following years, many Ca2+ antagonists were introduced to therapy. Specific Ca2+ antagonists interfere with the uptake of Ca2+ into the myocardium and prevent myocardial necrotization arising from deleterious intracellular Ca2+ overload. They act basically as specific inhibitors of the slow transsarcolemnal Ca2+ influx but do not or only slightly affect the fast Na+ current that initiates normal myocardial excitation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 5,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Further Reading

General Considerations

  • Barhanin J, Borsotto M, Coppola T, Fosset M, Hosey MM, Mourre C, Pauron D, Qar J, Romey G, Schmid A, Vandaele S, Van Renterghem C, Lazdunski M (1989) Biochemistry, molecular pharmacology, and functional control of Ca2+-channels. In: Wray DW, Norman RI, Hess P (eds) Calcium channels: structure and function, vol 560, Annals of the New York Academy of Sciences. New York Academy of Sciences, New York, pp 15–26

    Google Scholar 

  • Bean BP (1989) Classes of calcium channels in vertebrate cells. Annu Rev Physiol 51:367–384

    CAS  PubMed  Google Scholar 

  • Berjukow S, Marksteiner R, Gapp F, Sinnegger MJ, Hering S (2000) Molecular mechanism of calcium channel block by isradipine. J Biol Chem 275:22114–22120

    CAS  PubMed  Google Scholar 

  • Bertolino M, Llinás RR (1992) The central role of voltage-activated and receptor-operated calcium channels in neuronal cells. Annu Rev Pharmacol Toxicol 32:399–421

    CAS  PubMed  Google Scholar 

  • Catterall WA (1998) Receptor sites for blockers of L-type calcium channels. Naunyn-Schmiedeberg’s Arch Pharmacol 358(suppl 2):R 582

    Google Scholar 

  • Catterall WA, Saegar MJ, Takahashi M, Nunoki K (1989) Molecular properties of dihydropyridine-sensitive calcium channels. In: Wray DW, Norman RI, Hess P (eds) Calcium channels: structure and function, vol 560, Annals of the New York Academy of Sciences. New York Academy of Sciences, New York, pp 1–14

    Google Scholar 

  • Catterall WA, Perez-Reyes E, Snutch TP, Striennig J (2005) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57:411–425

    CAS  PubMed  Google Scholar 

  • Dascal N (1990) Analysis and functional characteristics of dihydropyridine-sensitive and -insensitive calcium channel proteins. Biochem Pharmacol 40:1171–1178

    CAS  PubMed  Google Scholar 

  • Diversé-Pierluissi M, Goldsmith PK, Dunlap K (1995) Transmitter-mediated inhibition of N-type calcium channels in sensory neurons involves multiple GTP-binding proteins and subunits. Neuron 14:191–200

    PubMed  Google Scholar 

  • Dolphin AC (1991) Regulation of calcium channel activity by GTP binding proteins and second messengers. Biochim Biophys Acta 1091:68–80

    CAS  PubMed  Google Scholar 

  • Ertel SI, Ertel EA, Clozel JP (1997) T-Type calcium channels and pharmacological blockade: potential pathophysiological relevance. Cardiovasc Drugs Ther 11:723–739

    CAS  PubMed  Google Scholar 

  • Ferrante J, Triggle DJ (1990) Drug- and disease-induced regulation of voltage-dependent calcium channels. Pharmacol Rev 42:29–44

    CAS  PubMed  Google Scholar 

  • Fisher TE, Bourque CW (1996) Calcium-channel subtypes in the somata and axon terminals of magnocellular neurosecretory cells. Trends Neurosci 19:440–444

    CAS  PubMed  Google Scholar 

  • Fleckenstein A (1964) Die Bedeutung der energiereichen Phosphate für Kontraktilität und Tonus des Myocards. Verh Dtsch Ges Inn Med 70:81–99

    CAS  PubMed  Google Scholar 

  • Fleckenstein A (1983) History of calcium antagonists. Circ Res 52(Suppl I):3–16

    CAS  Google Scholar 

  • Fleckenstein A, Kammermeier H, Döring HJ, Freund HJ (1967) Zum Wirkungsmechanismus neuartiger Koronardilatatoren mit gleichzeitig Sauerstoff einsparenden Myocardeffekten, Prenylamin. Irpoveratril Z Kreislaufforsch 56(716–744):839–853

    CAS  PubMed  Google Scholar 

  • Fleckenstein A, Frey M, Fleckenstein-Grün G (1983) Consequences of uncontrolled calcium entry and its prevention with calcium antagonists. Eur Heart J 4(Suppl H):43–50

    CAS  PubMed  Google Scholar 

  • Fleckenstein A, Frey M, Fleckenstein-Grün G (1986) Antihypertensive and arterial anticalcinotic effects of calcium antagonists. Am J Cardiol 57:1D–10D

    CAS  PubMed  Google Scholar 

  • Galizzi JP, Quar J, Fosset M, Van Renterghem C, Lazdunski M (1987) Regulation of calcium channels in aortic muscle cells by protein kinase C activators (diacylglycerol and phorbol esters) and by peptides (vasopressin and bombesin) that stimulate phosphoinositide breakdown. J Biol Chem 262:6947–6950

    CAS  PubMed  Google Scholar 

  • Hockerman GH, Peterson BZ, Johnson BD, Catterall WA (1997) Molecular determinants of drug binding and action on L-type calcium channels. Annu Rev Pharmacol Toxicol 37:361–396

    CAS  PubMed  Google Scholar 

  • Hosey MM, Chang FC, O’Callahan CM, Ptasienski J (1989) L-type channels in cardiac and skeletal muscle: purification and phosphorylation. In: Wray DW, Norman RI, Hess P (eds) Calcium channels: structure and function, vol 560, Annals of the New York Academy of Sciences. New York Academy of Sciences, New York, pp 27–38

    Google Scholar 

  • Ikeda SR (1996) Voltage-dependent modulation of N-type calcium channels by G-protein βγ -subunits. Nature 380:255–258

    CAS  PubMed  Google Scholar 

  • Kitamura N, Ohta T, Ito S, Nakazato Y (1997) Calcium channel subtypes in porcine adrenal chromaffin cells. Pflügers Arch Eur J Physiol 434:179–187

    CAS  Google Scholar 

  • Kochegarow AA (2003) Pharmacological modulators of voltage-gated calcium channels and their therapeutic application. Cell Calcium 33:145–162

    Google Scholar 

  • Maggi CA, Tramontana M, Cecconi R, Santicioli P (1990) Neurochemical evidence of N-type calcium channels in transmitter secretion from peripheral nerve endings of sensory nerves in guinea pigs. Neurosci Lett 114:203–206

    CAS  PubMed  Google Scholar 

  • Massie BM (1997) Mibefradil: a selective T-type calcium antagonist. Am J Cardiol 80A:231–321

    Google Scholar 

  • Miljanich GP, Ramachandran J (1995) Antagonists of neuronal calcium channels: structure, function and therapeutic implications. Annu Rev Pharmacol Toxicol 35:707–734

    CAS  PubMed  Google Scholar 

  • Mintz IM, Adams ME, Bean BP (1992) P-Type calcium channels in rat central and peripheral neurons. Neuron 9:85–95

    CAS  PubMed  Google Scholar 

  • Mitterdorfer J, Wang Z, Sinnegger MJ, Hering S, Striessnig J, Grabner M, Glossmann H (1996) Two amino acid residues in the IIIS5 segment of L-type calcium channels differentially contribute to 1,4-dihydropyridine sensitivity. J Biol Chem 271:30330–30335

    CAS  PubMed  Google Scholar 

  • Moresco RM, Govoni S, Battaini F, Trivulzio S, Trabucchi M (1990) Omegaconotoxin binding decreases in aged rat brain. Neurobiol Aging 11:433–436

    CAS  PubMed  Google Scholar 

  • Nakao SI, Ebata H, Hamamoto T, Kagawa Y, Hirata H (1988) Solubilization and reconstitution of voltage-dependent calcium channel from bovine cardiac muscle. Ca2+ influx assay using the fluorescent dye Quin2. Biochim Biophys Acta 944:337–343

    CAS  PubMed  Google Scholar 

  • Olivera BM, Cruz LJ, de Santos V, LeCheminant GW, Griffin D, Zeikus R, McIntosh JM, Galyean R, Varga J, Gray WR, Rivier J (1987) Neuronal calcium channel antagonists. Discrimination between calcium channel subtypes using ω-conotoxin from Conus magus venom. Biochemistry 26:2086–2090

    CAS  PubMed  Google Scholar 

  • Perez-Reyes E, Cribbs L, Daud A, Jung-Ha L (1998) Molecular characterization of T-type calcium channels. Naunyn-Schmiedeberg’s Arch Pharmacol 358(Suppl 2):R583

    Google Scholar 

  • Perez-Reyes E (2003) Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 83:117–161

    CAS  PubMed  Google Scholar 

  • Perez-Reyes E (2006) Molecular characterization of T-type calcium channels. Cell Calcium 40:89–96

    CAS  PubMed  Google Scholar 

  • Peterson BZ, Tanada TN, Catterall WA (1996) Molecular determinants of high affinity dihydropyridine binding in L-type calcium channels. J Biol Chem 271:5293–5296

    CAS  PubMed  Google Scholar 

  • Porzig H (1990) Pharmacological modulation of voltage-dependent calcium channels in intact cells. Rev Physiol Biochem Pharmacol 114:209–262

    CAS  PubMed  Google Scholar 

  • Rampe D, Triggle DJ (1993) New synthetic ligands for L-type voltage-gated calcium channels. Progr Drug Res 40:191–238

    CAS  Google Scholar 

  • Reuter H, Porzig H, Kokubun S, Prod’Hom B (1988) Calcium channels in the heart. Properties and modulation by dihydropyridine enantiomers. Ann NY Acad Sci 522:16–24

    CAS  PubMed  Google Scholar 

  • Rosenberg RL, Isaacson JS, Tsien RW (1989) Solubilization, partial purification, and properties of ω-conotoxin receptors associated with voltage-dependent calcium channels. In: Wray DW, Norman RI, Hess P (eds) Calcium channels: structure and function, vol 560, Annals of the New York Academy of Sciences. New York Academy of Sciences, New York, pp 39–52

    Google Scholar 

  • Schuster A, Lacinová L, Klugbauer N, Ito H, Birnbaumer L, Hofmann F (1996) The IVS6 segment of the L-type calcium channel is critical for the action of dihydropyridines and phenylalkylamines. EMBO J 15:2365–2370

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sinnegger MJ, Wang Z, Grabner M, Hering S, Striessnig J, Glossmann H, Mitterdorfer J (1997) Nine L-type amino acid residues confer full 1,4-dihydropyridine sensitivity to the neuronal calcium channel α 1A subunit. J Bill Chem 272:27686–27693

    CAS  Google Scholar 

  • Spedding M, Paoletti R (1992) Classification of calcium channels and the sites of action of drugs modifying channel function. Pharmacol Rev 44:363–376

    CAS  PubMed  Google Scholar 

  • Striessnig J, Grabner M, Mitterdorfer J, Hering S, Sinneger MJ, Glossmann H (1998) Structural basis of drug binding to L Ca2+ channels. Trends Pharmacol Sci 19:108–115

    CAS  PubMed  Google Scholar 

  • Striessnig J, Hoda JC, Koschak A, Zaghetto F, Müllner C, Sinnegger-Brauns MJ, Wild C, Watschinger K, Trockenbacher A, Pelster G (2004) L-type Ca2+ channels in Ca2+ channelopathies. Biochem Biophys Res Commun 322:1341–1346

    CAS  PubMed  Google Scholar 

  • Tsien RW, Tsien RY (1990) Calcium channels, stores and oscillations. Annu Rev Cell Biol 6:715–760

    CAS  PubMed  Google Scholar 

  • Woppmann A, Ramachandran J, Miljanich GP (1994) Calcium channel subtypes in rat brain: biochemical characterization of the high-affinity receptors for ω-conopeptides SNX-230 (synthetic MVIIC), SNX-183 (SVIB), and SNX-111 (MVIIA). Mol Cell Neurosci 5:350–357

    CAS  PubMed  Google Scholar 

In Vitro Methods

  • Balwierczak JL, Grupp IL, Grupp G, Schwartz A (1986) Effects of bepridil and diltiazem on [3H] nitrendipine binding to canine cardiac sarcolemma. Potentiation of pharmacological effects of nitrendipine by bepridil. J Pharmacol Exp Ther 237:40–48

    CAS  PubMed  Google Scholar 

  • Bellemann P, Ferry D, Lübbecke F, Glossmann H (1981) [3H]-Nitrendipine, a potent calcium antagonist, binds with high affinity to cardiac membranes. Arzneim Forsch/Drug Res 31:2064–2067

    CAS  Google Scholar 

  • Boles RG, Yamamura HI, Schoemaker H, Roeske WR (1984) Temperature-dependent modulation of [3H]nitrendipine binding by the calcium channel antagonists verapamil and diltiazem in rat brain synaptosomes. J Pharmacol Exp Ther 229:333–339

    CAS  PubMed  Google Scholar 

  • Bolger GT, Skolnick P (1986) Novel interactions of cations with dihydropyridine calcium antagonist binding sites in brain. Br J Pharmacol 88:857–866

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bolger GT, Genko P, Klockowski R, Luchowski E, Siegel H, Janis RA, Triggle AM, Triggle DJ (1983) Characterization of binding of the Ca2+ channel antagonist, [3H]nitrendipine, to guinea pig ileal smooth muscle. J Pharmacol Exp Ther 225:291–309

    CAS  PubMed  Google Scholar 

  • Campiani G, Fiorini I, De Filippis MP, Ciani SM, Garofalo A, Nacci V, Giorgi G, Sega A, Botta M, Chiarini A, Budriesi R, Bruni G, Romeo MR, Manzoni C, Mennini T (1996) Cardiovascular characterization of pyrrolo[2,1-d] [1,5]benzothiazepine derivatives binding selective to the peripheral-type benzodiazepine receptor (PBR): from dual PBR affinity and calcium antagonist activity to novel and selective calcium entry blockers. J Med Chem 39:2922–2938

    CAS  PubMed  Google Scholar 

  • Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (K I) and the concentration of inhibitor which causes 50 per cent inhibition (I 50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    CAS  PubMed  Google Scholar 

  • Cohen CJ, Ertel EA, Smith MM, Venam VJ, Adams ME, Leibowitz MD (1992) High affinity block of myocardial L-type calcium channels by the spider toxin ω-agatoxin IIIA: advantages over 1,4-dihydropyridines. Mol Pharmacol 42:947–951

    CAS  PubMed  Google Scholar 

  • Ehlert FJ, Itoga E, Roeske WR, Yamamura HI (1982a) The interaction of [3H]nitrendipine with receptors for calcium antagonists in the cerebral cortex and heart of rats. Biochem Biophys Res Commun 104:937–943

    CAS  PubMed  Google Scholar 

  • Ehlert FJ, Roeske WR, Itoga E, Yamamura HI (1982b) The binding of [3H]nitrendipine to receptors for calcium channel antagonists in the heart, cerebral cortex, and ileum of rats. Life Sci 30:2191–2202

    CAS  PubMed  Google Scholar 

  • Feigenbaum P, Garcia ML, Kaczorowski GJ (1988) Evidence for distinct sites coupled with high affinity ω-conotoxin receptors in rat brain synaptic plasma membrane vesicles. Biochem Biophys Res Commun 154:298–305

    CAS  PubMed  Google Scholar 

  • Ferry DR, Glossmann H (1982) Identification of putative calcium channels in skeletal muscle microsomes. FEBS Lett 148:331–337

    CAS  PubMed  Google Scholar 

  • Ferry DR, Goll A, Gadow C, Glossmann H (1984) (−)-3H-desmethoxyverapamil labelling of putative calcium channels in brain: autoradiographic distribution and allosteric coupling to 1,4-dihydropyridine and diltiazem binding sites. Naunyn Schmiedeberg’s Arch Pharmacol 327:183–187

    CAS  Google Scholar 

  • Ferry DR, Goll A, Glossmann H (1987) Photoaffinity labelling of the cardiac calcium channel. Biochem J 243:127–135

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fleckenstein A (1977) Specific pharmacology of calcium in myocardium, cardiac pacemakers and vascular smooth muscle. Ann Rev Pharmacol Toxicol 17:149–177

    CAS  Google Scholar 

  • Fleckenstein A, Kammermeier H, Döring HJ, Freund HJ (1967) Zum Wirkungsmechanismus neuartiger Koronardilatatoren mit gleichzeitig Sauerstoff einsparenden Myocardeffekten, Prenylamin. Irpoveratril Z Kreislaufforsch 56(716–744):839–853

    CAS  PubMed  Google Scholar 

  • Glossmann H, Ferry DR (1985) Assay for calcium channels. Meth Enzymol 109:513–550

    CAS  PubMed  Google Scholar 

  • Glossmann H, Linn T, Rombusch M, Ferry DR (1983) Temperature-dependent regulation of d-cis-[3H]diltiazem binding to Ca2+ channels by 1,4-dihydropyridine channel agonists and antagonists. FEBS Lett 160:226–232

    CAS  PubMed  Google Scholar 

  • Glossmann H, Ferry DR, Goll A, Striessnig J, Schober M (1985a) Calcium channels: basic properties as revealed by radioligand binding studies. J Cardiovasc Pharmacol 7(Suppl 6):S20–S30

    CAS  PubMed  Google Scholar 

  • Glossmann H, Ferry DR, Goll A, Striessnig J, Zernig G (1985b) Calcium channels and calcium channel drugs: recent biochemical and biophysical findings. Arzneim Forsch/Drug Res 35:1917–1935

    CAS  Google Scholar 

  • Glossmann H, Ferry DR, Striessnig J, Goll A, Moosburger K (1987) Resolving the structure of the Ca2+ channel by photoaffinity labelling. Trends Pharmacol Sci 8:95–100

    CAS  Google Scholar 

  • Goll A, Ferry DR, Striessnig J, Schober M, Glossmann H (1984) (−)-[3H]Desmethoxyverapamil, a novel Ca2+ channel probe. FEBS Lett 176:371–377

    CAS  PubMed  Google Scholar 

  • Gould RJ, Murphy KMM, Snyder SH (1982) [3H]Nitrendipine-labeled calcium channels discriminate inorganic calcium agonists and antagonists. Proc Natl Acad Sci U S A 79:3656–3660

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gould RJ, Murphy KMM, Snyder SH (1983) Tissue heterogeneity of calcium channel antagonist binding sites labeled by [3H]nitrendipine. Mol Pharmacol 25:235–241

    Google Scholar 

  • Grassegger A, Striessnig J, Weiler M, Knaus HG, Glossmann H (1989) [3H]HOE 166 defines a novel calcium antagonist drug receptor – distinct from the 1,4-dihydropyridine binding domain. Naunyn Schmiedeberg’s Arch Pharmacol 340:752–759

    CAS  Google Scholar 

  • He M, Bodi I, Mikala G, Schwartz A (1997) Motif III S5 of L-type channels is involved in the dihydropyridine binding site. J Biol Chem 272:2629–2633

    CAS  PubMed  Google Scholar 

  • Ichida S, Wada T, Nakazaki S, Matsuda N, Kishino H, Akimoto T (1993) Specific bindings of [3H](+)PN200–110 and [125]omega-conotoxin to crude membranes from differentiated NG 108–15 cells. Neurochem Res 18:633–638

    CAS  PubMed  Google Scholar 

  • Ikeda S, Amano Y, Adachi-Akahane S, Nagao T (1994) Binding of [3H](+)PN200–110 to aortic membranes from normotensive and spontaneously hypertensive rats. Eur J Pharmacol 264:223–226

    CAS  PubMed  Google Scholar 

  • Janis RA, Sarmianto JG, Maurer SC, Bolger GT, Triggle DJ (1984) Characteristics of the binding of [3H]nitrendipine to rabbit ventricular membranes: modification by other Ca2+ channel antagonists and by the Ca2+ channel agonist Bay K 8644. J Pharmacol Exp Ther 231:8–15

    CAS  PubMed  Google Scholar 

  • Kalasz H, Watanabe T, Yabana H, Itagaki K, Naito K, Nakayama H, Schwartz A, Vaghy PL (1993) Identification of 1,4-dihydropyridine binding domains within the primary structure of the α 1 subunit of the skeletal muscle L-type calcium channel. FEBS Lett 331:177–181

    CAS  PubMed  Google Scholar 

  • Knaus HG, Moshammer T, Kang HC, Haugland RP, Glossmann H (1992) A unique fluorescent phenylalkylamine probe for L-type Ca2+ channels. J Biol Chem 267:2179–2189

    CAS  PubMed  Google Scholar 

  • Lee HR, Roeske WR, Yamamura HI (1984) High affinity specific [3H](+)PN 200–110 binding to dihydropyridine receptors associated with calcium channels in rat cerebral cortex and heart. Life Sci 35:721–732

    CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein Measurement with the Folin Phenol Reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Matthes J, Huber I, Haaf O, Antepohl W, Striessnig J, Herzig S (2000) Pharmacodynamic interaction between mibefradil and other calcium channel blockers. Naunyn-Schmiedebergs Arch Pharmacol 361:578–583

    CAS  PubMed  Google Scholar 

  • Miwa K, Miyagi Y, Araie E, Sasayama S (1992) Effects of diltiazem and verapamil on (+)-PN 200–110 binding kinetics in dog cardiac membranes. Eur J Pharmacol 213:127–132

    Google Scholar 

  • Marangos PJ, Patel J, Miller C, Martino AM (1982) Specific calcium antagonist binding sites in brain. Life Sci 31:1575–1585

    CAS  PubMed  Google Scholar 

  • Naito K, McKenna E, Schwartz A, Vaghy PI (1989) Photoaffinity labeling of the purified skeletal muscle calcium antagonist receptor by a novel benzodiazepine, [3H]azidobutyryl diltiazem. J Biol Chem 264:21211–21214

    CAS  PubMed  Google Scholar 

  • Natale NR, Rogers ME, Staples R, Triggle DJ, Rutledge A (1999) Lipophilic 4-isoxazolyl-1,4-dihydropyridines: synthesis and structure-activity relationships. J Med Chem 42:3087–3093

    CAS  PubMed  Google Scholar 

  • Nokin P, Clinet M, Beaufort P, Meysman L, Laruel R, Chatelain P (1990) SR 33557, a novel calcium entry blocker. II Interactions with 1,4-dihydropyridine, phenylalkylamine, and benzodiazepine binding sites in rat heart sarcolemmal membranes. J Pharmacol Exp Ther 255:600–607

    CAS  PubMed  Google Scholar 

  • Peri R, Padmanabhan S, Rutledge A, Singh S, Triggle DJ (2000) Permanently charged chiral 1,4-dihydropyridines: molecular probes of L-type calcium channels. Synthesis and pharmacological characterization of methyl-(ω-trimethylalkylammonium 1,4-dihydro-2,6-dimethyl-4-(3-nitro-phenyl)-3,5-pyridinecarboxylate iodide, calcium channel antagonists. J Med Chem 43:2906–2914

    CAS  PubMed  Google Scholar 

  • Reynolds IJ, Snowman AM, Snyder SH (1986) (−)-[3H]Desmethoxyverapamil labels multiple calcium channel modulator receptors in brain and skeletal muscle membranes: differentiation by temperature and dihydropyridines. J Pharmacol Exp Ther 237:731–738

    CAS  PubMed  Google Scholar 

  • Ruth P, Flockerzi V, von Nettelblatt V, Oeken J, Hoffmann F (1985) Characterization of binding sites for nimodipine and (−)-desmethoxyverapamil in bovine sarcolemma. Eur J Biochem 150:313–322

    CAS  PubMed  Google Scholar 

  • Rutledge A, Triggle DJ (1995) The binding interactions of Ro 40–5967 at the L-type Ca2+ channel in cardiac tissue. Eur J Pharmacol 280:155–158

    CAS  PubMed  Google Scholar 

  • Salter F, Grover AK (1987) Characterization and solubilization of the nitrendipine binding protein from canine small intestinal circular smooth muscle. Cell Calcium 8:145–166

    CAS  PubMed  Google Scholar 

  • Schoemaker H, Langer SZ (1985) [3H]diltiazem binding to calcium channel antagonists recognition sites in rat cerebral cortex. Eur J Pharmacol 111:273–277

    CAS  PubMed  Google Scholar 

  • Shimasue K, Urushidani T, Hagiwara M, Nagao T (1996) Effects of anandamide and arachidonic acid on specific binding of (+)-PN200–110 and (?)-desmethoxyverapamil to L-type Ca2+ channel. Eur J Pharmacol 296:347–350

    CAS  PubMed  Google Scholar 

  • Striessnig J, Murphy BJ, Catterall WA (1991) Dihydropyridine receptor of L-type Ca2+ channels: identification of binding domains for [3H](+)-PN200–110 and [3H]azidopine within the α1 subunit. Proc Natl Acad Sci U S A 88:10769–10773

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vaghy PI, Striessnig J, Miwa K, Knaus HG, Itagati K, McKenna E, Glossmann H, Schwartz A (1987) Identification of a novel 1,4-dihydropyridine- and phenylalkylamine-binding polypeptide in calcium channel preparations. J Biol Chem 262:14337–14342

    CAS  PubMed  Google Scholar 

  • Wagner JA, Snowman AM, Biswas A, Olivera BM, Snyder SH (1988) ω-Conotoxin GVIA binding to a high-affinity receptor in brain: characterization, calcium sensitivity, and solubilization. J Neurosci 8:3354–3359

    CAS  PubMed  Google Scholar 

  • Watanabe T, Kalasz H, Yabana H, Kuniyasu A, Mershon J, Itagaki K, Vaghy PL, Naito K, Nakayama H, Schwartz A (1993) Azidobutyryl clentiazem, a new photoactivable diltiazem analog, labels benzothiazepine binding sites in the α 1 subunit of the skeletal muscle calcium channel. FEBS Lett 334:261–264

    CAS  PubMed  Google Scholar 

  • Weiland GA, Oswald RE (1985) The mechanism of binding of dihydropyridine calcium channel blockers to rat brain membranes. J Biol Chem 260:8456–8464

    CAS  PubMed  Google Scholar 

  • Yaney GC, Stafford A, Henstenberg JD, Sharp GWG, Weiland GA (1991) Binding of the dihydropyridine calcium channel blocker (+)-[3H]isopropyl-4-(2,1,3-benzoxadiazol-4-yl)-1,4-dihydro-5-methoxy-carbonyl-2,6-dimethyl-3- pyridinecarboxylate (PN200–110) to RINm5F membranes and cells. Characterization and functional significance. J Pharmacol Exp Ther 258:652–662

    CAS  PubMed  Google Scholar 

Calcium Antagonism in Isolated Organs

  • Grupp IL, Grupp G (1984) Isolated heart preparations perfused or superfused with balanced salt solutions. In: Schwartz A (ed) Methods in pharmacology, vol 5. Myocardial biology. Plenum, New York/London, pp 111–128

    Google Scholar 

  • Kohlhardt M, Fleckenstein A (1977) Inhibition of the slow inward current by nifedipine in mammalian ventricular myocardium. Naunyn Schmiedeberg’s Arch Pharmacol 298:267–272

    CAS  Google Scholar 

  • Linz W, Schölkens BA, Kaiser J, Just M, Bei-Yin Q, Albus U, Petry P (1989) Cardiac arrhythmias are ameliorated by local inhibition of angiotensin formation and bradykinin degradation with the converting-enzyme inhibitor ramipril. Cardiovasc Drugs Ther 3:873–882

    CAS  PubMed  Google Scholar 

  • Striessnig J, Meusburger E, Grabner M, Knaus HG, Glossmann H, Kaiser J, Schölkens B, Becker R, Linz W, Henning R (1988) Evidence for a distinct Ca2+ antagonist receptor for the novel benzothiazinone compound Hoe 166. Naunyn-Schmiedeberg’s Arch Pharmacol 337:331–340

    Google Scholar 

Calcium Antagonism in the Isolated Guinea Pig Atrium

  • Church J, Zsotér TT (1980) Calcium antagonistic drugs. Mechanism of action. Can J Physiol Pharmacol 58:254–264

    CAS  PubMed  Google Scholar 

  • Grupp IL, Grupp G (1984) Isolated heart preparations perfused or superfused with balanced salt solutions. In: Schwartz A (ed) Methods in pharmacology, vol 5. Myocardial biology. Plenum, New York/London, pp 111–128

    Google Scholar 

  • Leboeuf J, Baissat J, Massingham R (1992) Protective effect of bepridil and against veratrine-induced contracture in rat atria. Eur J Pharmacol 216:183–189

    CAS  PubMed  Google Scholar 

  • Lindner E, Ruppert D (1982) Effects of calcium antagonists on coronary spasm and pulmonary artery contraction in comparison to their antagonistic action against K-strophanthin in isolated guinea-pig atria. Pharmacology 24:294–302

    Google Scholar 

  • Rajagopalan R, Ghate AV, Subbarayan P, Linz W, Schoelkens BA (1993) Cardiotonic activity of the water soluble forskoline derivative 8,13-epoxy-6β-(piperidinoacetoxy)-1α,7β,9α-trihydroxy-labd-14-en-11-one. Arzneim Forsch/Drug Res 43(I):313–319

    CAS  Google Scholar 

  • Salako LA, Vaugham Williams EM, Wittig JH (1976) Investigations to characterize a new anti-arrhythmic drug, ORG 6001, including a simple test for calcium antagonism. Br J Pharmacol 57:251–262

    PubMed Central  CAS  PubMed  Google Scholar 

Calcium Antagonism in the Isolated Rabbit Aorta

  • Hof RP, Vuorela HJ (1983) Assessing calcium antagonism on vascular smooth muscle: comparison of three methods. J Pharmacol Methods 9:41–52

    CAS  PubMed  Google Scholar 

  • Matsuo K, Morita S, Uchida MK, Sakai K (1989) Simple and specific assessment of Ca-entry-blocking activities of drugs by measurement of Ca reversal. J Pharmacol Methods 22:265–275

    CAS  PubMed  Google Scholar 

  • Micheli D, Collodel A, Semerano C, Gaviraghi G, Carpi C (1990) Lacidipine: a calcium antagonist with potent and long-lasting antihypertensive effects in animal studies. J Cardiovasc Pharmacol 15:666–675

    CAS  PubMed  Google Scholar 

  • Rüegg UT, Doyle VM, Zuber JF, Hof RP (1985) A smooth muscle cell line suitable for the study of voltage sensitive calcium channels. Biochem Biophys Res Commun 130:447–453

    PubMed  Google Scholar 

  • Robinson CP, Sastry BVR (1976) The influence of mecamylamine on contraction induced by different agonists and the role of calcium ions in the isolated rabbit aorta. J Pharmacol Exp Ther 197:57–65

    CAS  PubMed  Google Scholar 

  • Striessnig J, Meusburger E, Grabner M, Knaus HG, Glossmann H, Kaiser J, Schölkens B, Becker R, Linz W, Henning R (1988) Evidence for a distinct Ca2+ antagonist receptor for the novel benzothiazinone compound Hoe 166. Naunyn-Schmiedeberg’s Arch Pharmacol 337:331–340

    Google Scholar 

  • Towart R (1982) Effects of nitrendipine (Bay e 5009), nifedipine, verapamil, phentolamine, papaverine, and minoxidil on contractions of isolated rabbit aortic smooth muscle. J Cardiovasc Pharmacol 4:895–902

    PubMed  Google Scholar 

  • Turner RA (1965) Cardiotonic agents; The aortic strip of the rabbit. In: Turner RA (ed) Screening methods in pharmacology. Academic, New York/London, pp 203–209

    Google Scholar 

Calcium Antagonism in the Isolated Guinea Pig Pulmonary Artery

  • Green AF, Boura ALA (1964) Sympathetic nerve blockade. In: Laurence DR, Bacharach AL (eds) Evaluation of drug activities: pharmacometrics. Academic, London/New York, pp 370–430

    Google Scholar 

  • Lindner E, Ruppert D (1982) Effects of Ca2+ antagonists on coronary spasm and pulmonary artery contraction in comparison to their antagonistic action against k-strophanthin in isolated guinea-pig atria. Pharmacology 24:294–302

    Google Scholar 

  • Striessnig J, Meusburger E, Grabner M, Knaus HG, Glossmann H, Kaiser J, Schölkens B, Becker R, Linz W, Henning R (1988) Evidence for a distinct Ca2+ antagonist receptor for the novel benzothiazinone compound Hoe 166. Naunyn-Schmiedeberg’s Arch Pharmacol 337:331–340

    Google Scholar 

In Vivo Methods

  • Clapham JC (1988) A method for in vivo assessment of calcium slow channel blocking drugs. J Cardiovasc Pharmacol 11:56–60

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gralinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Gralinski, M., Neves, L.A.A., Tiniakova, O. (2016). Calcium Uptake Inhibition Activity. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Cham. https://doi.org/10.1007/978-3-319-05392-9_6

Download citation

Publish with us

Policies and ethics