Cardiovascular Analysis In Vivo

  • Michael Gralinski
  • Liomar A. A. Neves
  • Olga Tiniakova
Reference work entry


The test is used to detect the effect of compounds on blood pressure and heart rate of anesthetized rats and to check for possible interference with adrenergic receptors. Antihypertensive agents with different mechanisms of action can be detected with this test.

References and Further Reading

Hemodynamic Screening in Anesthetized Rats

  1. Baltatu O, Fontes MAP, Campagnole-Santos MJ, Caligiorni S, Ganten D, Santos RAS, Bader M (2001) Alterations in the renin-angiotensin system, at the RVLM of transgenic rats with low brain angiotensinogen. Am J Physiol 280:R428–R433Google Scholar
  2. Chu D, Hofmann A, Stürmer E (1978) Anesthetized normotensive rats for the detection of hypotensive activity of a β-adrenoceptor antagonist and other anti-hypertensive agents. Arzneim Forsch/Drug Res 28:2093–2097Google Scholar
  3. Da Silva VJD, da Silva SV, Salgado MCO, Salgado HC (1994) Chronic converting enzyme inhibition facilitates baroreceptor resetting to hypertensive levels. Hypertension 23(Suppl I):I-68–I-72Google Scholar
  4. de Abreu GR, Salgado HC (1990) Antihypertensive drugs distinctly modulate the rapid resetting of the baroreceptors. Hypertension 15(Suppl 1):I-63–I-67Google Scholar
  5. DeWildt DJ, Sangster B (1983) An evaluation of derived aortic flow parameters as indices of myocardial contractility in rats. J Pharmacol Methods 10:55–64Google Scholar
  6. Hayes JS (1982) A simple technique for determining contractility, intraventricular pressure, and heart rate in the anesthetized guinea pig. J Pharmacol Methods 8:231–239PubMedGoogle Scholar
  7. Hyman AL, Hao Q, Tower A, Kadowitz PJ, Champion HC, Gumusel B, Lippton H (1998) Novel catheterization technique for the in vitro measurements of pulmonary vascular responses in rats. Am J Physiol 274(Heart Circ Physiol 43):H1218–H1229PubMedGoogle Scholar
  8. King KA, Tabrizchi R, Pang CCY (1987) Investigation of the central and peripheral actions of clonidine and methoxamine using a new in vivo rat preparation. J Pharmacol Methods 17:283–295PubMedGoogle Scholar
  9. Mervaala E, Dehmel B, Gross V, Lippoldt A, Bohlender J, Milia AF, Ganten D, Luft FC (1999) Angiotensin-converting enzyme inhibition and AT1 receptor blockade modify the pressure-natriuresis relationship by additive mechanisms in rats with human renin and angiotensinogen genes. J Am Soc Nephrol 10:1669–1680PubMedGoogle Scholar
  10. Pang CCY, Chan TCK (1985) Differential intraarterial pressure recordings from different arteries in the rat. J Pharmacol Methods 13:325–330PubMedGoogle Scholar
  11. Rothermund L, Friebe A, Paul M, Koesling D, Kreutz R (2000) Acute blood pressure effects of YC-1-induced activation of soluble guanylyl cyclase in normotensive and hypertensive rats. Br J Pharmacol 130:205–208PubMedCentralPubMedGoogle Scholar
  12. Salgado HC, Krieger EM (1988) Extent of baroreceptor resetting in response to sodium nitroprusside and verapamil. Hypertension 11(Suppl 1):I-121–I-125Google Scholar
  13. Veelken R, Unger T, Medvedev OS (1990) Improved methods for baroreceptor investigations in chronically instrumented rats. J Pharmacol Methods 23:247–254PubMedGoogle Scholar
  14. Wallerath T, Witte K, Schäfer SC, Schwarz PM, Prellwitz W, Wohlfart P, Kleinert H, Lehr HA, Lemmer B, Förstermann U (1999) Down-regulation of the expression of endothelial NO synthase is likely to contribute to glucocorticoid- mediated hypertension. Proc Natl Acad Sci U S A 96:13357–13362PubMedCentralPubMedGoogle Scholar
  15. Williams DL Jr, Murphy KL, Nolan NA, O’Brien JA, Pettibone DJ, Kivlighn SD, Krause SM, Lis EV Jr, Zingaro GJ, Gabel RA, Clayton FC, Siegl PKS, Zhang K, Naue J, Vyas K, Walsh TF, Fitch KJ, Chakravarty PK, Greenlee WJ, Clineschmidt BV (1965) Pharmacology of L-754,142, a highly potent, orally active, nonpeptidyl endothelin antagonist. J Pharmacol Exp Ther 275:1518–1526Google Scholar
  16. Zavisca FG, David Y, Kao J, Cronau LH, Stanley TH, David T (1994) A new method to evaluate cardiovascular response in anesthetized rats. Hypertension after variable intensity, brief electrical stimuli. J Pharmacol Toxicol Methods 31:99–105PubMedGoogle Scholar
  17. Zimmer HG, Zierhut W, Marschner G (1987) Combination of ribose with calcium antagonist and β-blocker treatment in closed-chest rats. J Mol Cell Cardiol 19:635–639PubMedGoogle Scholar
  18. Zimmer HG, Zierhut W, Seesko RC, Varekamp AE (1988) Right heart catheterization in rats with pulmonary hypertension and right ventricular hypertrophy. Basic Res Cardiol 83:48–57PubMedGoogle Scholar

Blood Pressure in Pithed Rats

  1. Balt JC, Mathy MJ, Pfaffendorf M, van Zwieten PA (2001) Inhibition of angiotensin II-induced facilitation of sympathetic neurotransmission in the pithed rat: a comparison between losartan, irbesartan, telmisartan and captopril. J Hypertens 19:465–473PubMedGoogle Scholar
  2. Curtis MJ, McLeod BA, Walker MJA (1986) An improved pithed rat preparation: the actions of the optical enantiomers of verapamil. Asia Pac J Pharmacol 1:73–78Google Scholar
  3. Fluharty SJ, Vollmer RR, Meyers SA, McCann MJ, Zigmond MJ, Stricker EM (1987) Recovery of chronotropic responsiveness after systemic 6-hydroxydopamine treatment: studies in the pithed rat. J Pharmacol Exp Ther 243:415–423PubMedGoogle Scholar
  4. Gillespie JS, Muir TC (1967) A method of stimulating the complete sympathetic outflow from the spinal cord to blood vessels in the pithed rat. Br J Pharmacol Chemother 30:78–87Google Scholar
  5. Gillespie S, MacLaren A, Pollock D (1970) A method of stimulating different segments of the autonomic flow from the spinal column to various organs in the pithed cat and rat. Br J Pharmacol 40:257–267PubMedCentralPubMedGoogle Scholar
  6. MacLean MR, Hiley CR (1988) Effect of artificial respiratory volume on the cardiovascular responses to an α 1- and α 2-adrenoceptor agonist in the air-ventilated pithed rat. Br J Pharmacol 93:781–790PubMedCentralPubMedGoogle Scholar
  7. Majewski H, Murphy TV (1989) Beta-adrenoreceptor blockade and sympathetic neurotransmission in the pithed rat. J Hypertens 7:991–996PubMedGoogle Scholar
  8. Milmer KE, Clough DP (1983) Optimum ventilation levels for maintenance of normal arterial blood pO2, pCO2, and pH in the pithed rat preparation. J Pharmacol Methods 10:185–192PubMedGoogle Scholar
  9. Nichols AJ, Hamada A, Adejare A, Miller DD, Patil PN, Ruffolo RR (1989) Effect of aromatic fluorine substitution on the alpha and beta adrenoreceptor mediated effects of 3,4-dihydroxy-tolazoline in the pithed rat. J Pharmacol Exp Ther 248:617–676Google Scholar
  10. Schneider J, Fruh C, Wilffert B, Peters T (1990) Effects of the selective β 1-adrenoreceptor antagonist, Nebivolol, on cardiovascular parameters in the pithed normotensive rat. Pharmacology 40:33–41PubMedGoogle Scholar
  11. Shipley RE, Tilden JH (1947) A pithed rat preparation suitable for assaying pressor substances. Proc Soc Exp Biol Med 64:453–455PubMedGoogle Scholar
  12. Trolin G (1975) Effects of pentobarbitone and decerebration on the clonidine-induced circulatory changes. Eur J Pharmacol 34:1–7PubMedGoogle Scholar
  13. Tung LH, Jackman G, Campell B, Louis S, Iakovidis D, Louis WJ (1993) Partial agonist activity of celiprolol. J Cardiovasc Pharmacol 21:484–488PubMedGoogle Scholar
  14. VanMeel JCA, Wilfert B, De Zoeten K, Timmermans PBMWM, Van Zwieten PA (1982) The inhibitory effect of newer calcium antagonists (Nimodipine and PY-108–068) on vasoconstriction in vivo mediated by postsynaptic α 2-adrenoreceptors. Arch Int Pharmacodyn Ther 260:206–217Google Scholar
  15. Vargas HM, Zhou L, Gorman AJ (1994) Role of vascular alpha- 1 adrenoceptor subtypes in the pressor response to sympathetic nerve stimulation in the pithed rat. J Pharmacol Exp Ther 271:748–754PubMedGoogle Scholar

Antihypertensive Vasodilator Activity in Ganglion-Blocked, Angiotensin II Supported Rats

  1. Deitchman D, Braselton JP, Hayes DC, Stratman RL (1980) The ganglion-blocked, angiotensin II-supported rat: a model for demonstrating antihypertensive vasodilator activity. J Pharmacol Methods 3:311–321PubMedGoogle Scholar
  2. Santajuliana D, Hornfeldt BJ, Osborn JW (1996) Use of ganglionic blockers to assess neurogenic pressor activity in conscious rats. J Pharmacol Toxicol Methods 35:45–54PubMedGoogle Scholar

Blood Pressure in Conscious Hypertensive Rats (Tail Cuff Method)

  1. Buñag RD (1984) Measurement of blood pressure in rats. In: de Jong W (ed) Experimental and genetic models of hypertension, vol 4. Elsevier Science, New York, pp 1–12Google Scholar
  2. Buñag RD, McCubbin JW, Page IH (1971) Lack of correlation between direct and indirect measurement of arterial pressure in unanesthetized rats. Cardiovasc Res 5:24–31Google Scholar
  3. Kersten H, Brosene WG Jr, Ablondi F, Subba Row Y (1947) A new method for the indirect measurement of blood pressure in the rat. J Lab Clin Med 32:1090–1098PubMedGoogle Scholar
  4. Mahoney LT, Brody MJ (1978) A method for indirect recording of arterial pressure in the conscious cat. J Pharmacol Methods 1:61–66Google Scholar
  5. Matsuda S, Kurokawa K, Higuchi K, Imamura N, Hakata H, Ueda M (1987) A new blood pressure measuring apparatus equipped with a microcomputer system for conscious rats. J Pharmacol Methods 17:361–376PubMedGoogle Scholar
  6. Patten JR, Engen RL (1971) The comparison of an indirect method with a direct method for determining blood pressure on rats. Cardiovasc Res Cent Bull 9:155–159Google Scholar
  7. Pernot F (1991) Blood pressure on conscious rats, non-invasive method: tail-cuff. In: 7th Freiburg focus on biomeasurement. Cardiovascular and respiratory in vivo studies. Biomesstechnik-Verlag March GmbH, 79232 March, pp 30–32Google Scholar
  8. Pfeffer JM, Pfeffer MA, Frohlich ED (1971) Validity of an indirect tail-cuff method for determining systolic arterial pressure in unanesthetized normotensive and spontaneously hypertensive rats. J Lab Clin Med 78:957–962PubMedGoogle Scholar
  9. Stanton HC (1971) Experimental hypertension. In: Schwartz A (ed) Methods in pharmacology, vol 1, pp 125–150. Appleton-Century-Crofts, Meredith Corporation, New YorkGoogle Scholar
  10. Widdop RE, Li XC (1997) A simple versatile method for measuring tail cuff systolic blood pressure in conscious rats. Clin Sci 93:191–194PubMedGoogle Scholar
  11. Wiester MJ, Iltis R (1976) Diastolic and systolic blood pressure measurements in monkeys determined by a non invasive tail-cuff technique. J Lab Clin Med 87:354–361PubMedGoogle Scholar

Direct Measurement of Blood Pressure in Conscious Rats with Indwelling Catheter

  1. Akrawi SH, Wiedlund PJ (1987) A method for chronic portal vein infusion in unrestrained rats. J Pharmacol Methods 17:67–74PubMedGoogle Scholar
  2. Bao G, Qadri F, Stauss B, Stauss H, Gohlke P, Unger T (1991) HOE 140, a new highly potent and long-acting bradykinin antagonist in conscious rats. Eur J Pharmacol 200:179–182PubMedGoogle Scholar
  3. Buckingham RE (1976) Indwelling catheters for direct recording of arterial blood pressure and intravenous injection of drugs in the conscious rat. J Pharm Pharmacol 28:459–461PubMedGoogle Scholar
  4. Buñag RD, McCubbin JW, Page IH (1971) Lack of correlation between direct and indirect measurement of arterial pressure in unanesthetized rats. Cardiovasc Res 5:24–31Google Scholar
  5. Garthoff B (1983) Twenty-four hour blood pressure recording in aortic coarctation hypertensive rats. Naunyn Schmiedeberg’s Arch Pharmacol 322:R22Google Scholar
  6. Garthoff B, Towart R (1981) A new system for the continuous direct recording of blood pressure and heart rate in the conscious rat. J Pharmacol Methods 5:275–278PubMedGoogle Scholar
  7. Hagmüller K, Liebmann P, Porta S, Rinner I (1992) A tail-artery cannulation method for the study of blood parameters in freely moving rats. J Pharmacol Toxicol Methods 28:79–83PubMedGoogle Scholar
  8. Hilditch A, Newberry A, Whithing S (1978) An improved device for the direct recording of blood pressure in conscious dogs. J Pharmacol Methods 1:89–90Google Scholar
  9. Kimura RE, Lapine TR, Gooch WM III (1988) Portal venous and aortic glucose and lactate changes in a chronically catheterized rat. Pediatr Res 23:235–240PubMedGoogle Scholar
  10. Kurowski SZ, Slavik KJ, Szilagyi JE (1991) A method for maintaining and protecting chronic arterial and venous catheters in conscious rats. J Pharmacol Methods 26:249–256PubMedGoogle Scholar
  11. Laffan RJ, Peterson A, Hitch SW, Jeunelot C (1972) A technique for prolonged, continuous recording of blood pressure of unrestrained rats. Cardiovasc Res 6:319–324PubMedGoogle Scholar
  12. Liebmann PM, Hofer D, Absenger A, Zimmermann P, Weiss U, Porta S, Schauenstein K (1995) Computer-controlled flushing for long-term cannulation in freely moving rats. J Pharmacol Toxicol Methods 34:211–214PubMedGoogle Scholar
  13. Linz W, Klaus E, Albus U, Becker R, Mania D, Englert HC, Schölkens BA (1992) Cardiovascular effects of the novel potassium channel opener (3S,4R)-3-hydroxy-2,2-dimethyl-4-(2-oxo-1-pyrrolidinyl)-6-phenylsulfonylchromane hemihydrate. Arzneim Forsch/Drug Res 42:1180–1185Google Scholar
  14. Remie R, van Dongen JJ, Rensema JW (1990) Permanent cannulation of the jugular vein (acc. to Steffens). In: Van Dongen R, van Wunnik R (eds) Manual of microsurgery on the laboratory rat. Elsevier Science, New York, pp 159–169Google Scholar
  15. Remie R, van Dongen JJ, Rensema JW (1999) Permanent cannulation of the iliolumbar artery. In: Van Dongen R, van Wunnik R (eds) Manual of microsurgery on the laboratory rat. Elsevier Science, New York, pp 231–241Google Scholar
  16. Rezek M, Havlicek V (1975) Chronic multipurpose cannulas and a technique for the cannulation of small veins and arteries. Physiol Behav 15:623–626Google Scholar
  17. Robineau F (1988) A simple method for recording electrocardiograms in conscious, unrestrained rats. J Pharmacol Methods 19:127–133PubMedGoogle Scholar
  18. Santajuliana D, Hornfeldt BJ, Osborn JW (1966) Use of ganglionic blockers to assess neurogenic pressor activity in conscious rats. J Pharmacol Toxicol Methods 35:45–54Google Scholar
  19. Schenk J, Hebden A, McNeill JH (1992) Measurement of cardiac left ventricular pressure in conscious rats using a fluid-filled catheter. J Pharmacol Toxicol Methods 27:171–175PubMedGoogle Scholar
  20. Stanton HC (1971) Experimental hypertension. In: Schwartz A (ed) Methods in pharmacology, vol 1, pp 125–150. Appleton-Century-Crofts, Meredith Corporation, New YorkGoogle Scholar
  21. Sweet CS, Columbo JM (1979) Cardiovascular properties of antihypertensive drugs in a model of severe renal hypertension. J Pharmacol Methods 2:223–239Google Scholar
  22. Tsui BCH, Mosher SJ, Yeung PKF (1991) A reliable technique for chronic carotid arterial catheterization in the rat. J Pharmacol Methods 25:343–352PubMedGoogle Scholar
  23. Weeks JR, Jones JA (1960) Routine direct measurement of arterial pressure in unanesthetized rats. Proc Soc Exp Biol Med 104:646–648PubMedGoogle Scholar
  24. Wixson SK, Murray KA, Hughes HC Jr (1987) A technique for chronic arterial catheterization in the rat. Lab Anim Sci 37:108–110PubMedGoogle Scholar

Cannulation Techniques in Rodents

  1. Cocchetto DM, Bjornsson TD (1983) Methods for vascular access and collection of body fluids from the laboratory rat. J Pharm Sci 72:465–492PubMedGoogle Scholar

Permanent Cannulation of the Jugular Vein in Rats

  1. Brown MR, Hedge GA (1972) Thyroid secretion in the unanesthetized, stress-free rat and its suppression by pentobarbital. Neuroendocrinology 9:158–174PubMedGoogle Scholar
  2. Dons RF, Havlik R (1986) A multilayered cannula for long term blood sampling in unrestrained rats. Lab Anim Sci 36:544–547PubMedGoogle Scholar
  3. Hutchaleelaha A, Sukbuntherng J, Mayersohn M (1997) Simple apparatus for serial blood sampling in rodents permitting simultaneous measurement of locomotor activity as illustrated with cocaine. J Pharmacol Toxicol Methods 37:9–14PubMedGoogle Scholar
  4. Nicolaidis S, Rowland N, Meile MJ, Marfaing-Jallat P, Pesez A (1974) A flexible technique for long term infusion in unrestrained rats. Pharmacol Biochem Behav 2:131–136PubMedGoogle Scholar
  5. Remie R, van Dongen JJ, Rensema JW (1990) Permanent cannulation of the jugular vein (acc. to Steffens). In: Van Dongen JJ, Remie R, Rensema JW, van Wunnik GHJ (eds) Manual of microsurgery on the laboratory rat. Elsevier Science, New York, pp 159–169Google Scholar
  6. Steffens AB (1969) A method for frequent sampling of blood and continuous infusion of fluids in the rat without disturbing the animal. Physiol Behav 4:833–936Google Scholar

Permanent Cannulation of the Renal Vein in Rats

  1. Remie R, Rensema JW, van Dongen JJ (1990) Permanent cannulation of the renal vein. In: Van Dongen JJ, Remie R, Rensema JW, van Wunnik GHJ (eds) Manual of microsurgery on the laboratory rat. Elsevier Science, New York, pp 223–230Google Scholar

Permanent Cannulation of the Portal Vein in Rats

  1. Helman A, Castaing D, Morin J, Pfister-Lemaire N, Assan R (1984) A new technique for hepatic portal vein catheterization in freely moving rats. Am J Physiol 246(Endocrinol Metab 9):E544–E547PubMedGoogle Scholar
  2. Hyun SA, Vanhouny GV, Treadwell CR (1967) Portal absorption of fatty acids in lymph and portal vein cannulated rats. Biochim Biophys Acta 137:296–305PubMedGoogle Scholar
  3. Pelzmann KS, Havemeyer RN (1971) Portal blood vein sampling in intestinal drug absorption studies. J Pharm Sci 60:331–332PubMedGoogle Scholar
  4. Remie R, Zaagsma J (1986) A new technique for the study off vascular presynaptic receptors in freely moving rats. Am J Physiol 251:H463–H467PubMedGoogle Scholar
  5. Remie R, Knot HJ, Kolker HJ, Zaagsma J (1988) Pronounced facilitation of endogenous noradrenaline release by presynaptic β 2-adrenoceptors in the vasculature of freely moving rats. Naunyn-Schmiedeberg’s Arch Pharmacol 338:215–220Google Scholar
  6. Remie R, Coppes RP, Zaagsma J (1989) Presynaptic muscarinic receptors inhibiting endogenous noradrenaline release in the portal vein of the freely moving rat. Br J Pharmacol 97:586–590PubMedCentralPubMedGoogle Scholar
  7. Remie R, van Dongen JJ, Rensema JW, van Wunnik GHJ (1990) Permanent cannulation of the portal vein. In: Van Dongen JJ, Remie R, Rensema JW, van Wunnik GHJ (eds) Manual of microsurgery on the laboratory rat. Elsevier Science, New York, pp 213–221Google Scholar
  8. Sable-Amplis R, Abadie D (1975) Permanent cannulation of the hepatic portal vein in rats. J Appl Physiol 38:358–359PubMedGoogle Scholar
  9. Suzuki T, Sattoh Y, Isozaki S, Ishida R (1973) Simple method for portal vein infusion in the rat. J Pharm Sci 62:345–347PubMedGoogle Scholar

Permanent Cannulation of the Thoracic Duct in Rats

  1. Biedl A, Offer TR (1907) Über Beziehungen der Ductuslymphe zum Zuckerhaushalt. Hemmung von Adrenalinwirkung durch die Lymphe. Wien Kin WschrGoogle Scholar
  2. Bollman JL, Cain JC, Grindlay JH (1948) Techniques for the collection of lymph from the liver, small intestine, or thoracic duct of the rat. J Lab Clin Med 33:1349–1352PubMedGoogle Scholar
  3. Girardet RE (1975) Surgical technique for long-term studies of thoracic duct circulation in the rat. J Appl Physiol 39:682–688PubMedGoogle Scholar
  4. Gryaznova AV (1962) Ligation of the thoracic duct in dogs. Arkh Anat Gistol Embriol 42:90–95Google Scholar
  5. Gryaznova AV (1963) Ligation of the thoracic duct in dogs. Fed Proc 22/II, T886Google Scholar
  6. Remie R, van Dongen JJ, Rensema JW (1990) Permanent cannulation of the thoracic duct. In: Van Dongen JJ, Remie R, Rensema JW, van Wunnik GHJ (eds) Manual of microsurgery on the laboratory rat. Elsevier Science, New York, pp 243–253Google Scholar
  7. Vogel HG (1963) Unpublished dataGoogle Scholar

Portacaval Anastomosis in Rats

  1. De Boer JEG, Janssen MA, van Dongen JJ, Blitz W, Oostenbroek RJ, Wesdorp RIC, Soeters PB (1986) Sequential metabolic characteristics following portacaval shunt in rats. Eur Soc Surg Res 18:96–106Google Scholar
  2. Eck NV (1877) On the question of ligature of the portal vein. Voen Med J St Petersburg 130:1–2Google Scholar
  3. Funovics JM, Cummings MG, Shuman L, James JH, Fischer JE (1975) An improved non suture method for portacaval anastomosis in the rat. Surgery 77:668–672Google Scholar
  4. Lee SH, Fischer B (1961) Portacaval shunt in the rat. Surgery 50:668–672PubMedGoogle Scholar
  5. van Dongen JJ, Remie R, Rensema JW, van Wunnik GHJ (1990) Portacaval anastomosis. In: Van Dongen R, van Wunnik R (eds) Manual of microsurgery on the laboratory rat. Elsevier Science, New York, pp 171–199Google Scholar

Cardiovascular Analysis in Anesthetized Mice

  1. Champion HC, Villnave DJ, Tower A, Kadowitz PJ, Hyman AL (2000) A novel right-heart catheterization technique for in vivo measurement of vascular responses in lungs of intact mice. Am J Physiol Heart Circ Physiol 278:H8–H15PubMedGoogle Scholar
  2. Lorenz JN, Robbins J (1997) Measurement of intraventricular pressure and cardiac performance in the intact, closed chest mouse. Am J Physiol 272(Heart Circ Physiol 41):H1137–H1146PubMedGoogle Scholar

Blood Pressure in Anesthetized Cats

  1. Chen K, Hernandez Y, Dertchen KI, Gillis RA (1994) Intravenous NBQX inhibits spontaneously occurring sympathetic nerve activity and reduces blood pressure in cats. Eur J Pharmacol 252:155–160PubMedGoogle Scholar
  2. Corman LE, diPalma JR (1967) Animal techniques for measuring drug effects on various peripheral vascular beds. In: Siegler PE, Moyer JH (eds) Animal and clinical pharmacologic techniques in drug evaluation, vol II. Year Book Medical, Chicago, pp 434–443Google Scholar
  3. Crumb WJ Jr, Kadowitz PJ, Xu YQ, Clarkson CW (1990) Electrocardiographic evidence for cocaine cardiotoxicity in cat. Can J Physiol Pharmacol 68:622–625PubMedGoogle Scholar
  4. Henderson TR, DeLorme EM, Takahashi K, Gray AP, Dretchen KI (1988) Cardiovascular effects of 1-methyl-4-(1-naphthyl-vinyl)piperidine hydrochloride. Eur J Pharmacol 158:149–152PubMedGoogle Scholar
  5. Mian MA, Malta E, Raper C (1986) Cardiovascular actions of Xamoterol (ICI 118,587) in anaesthetized cats, rats, and guinea pigs. J Cardiovasc Pharmacol 8:314–323PubMedGoogle Scholar
  6. Pichler L, Kobinger W (1985) Possible function of α 1-adrenoceptors in the CNS in anesthetized and conscious animals. Eur J Pharmacol 107:305–311PubMedGoogle Scholar
  7. Sander HD (1965) The vasoconstrictor and vasodilator effects of procaine. Can J Physiol Pharmacol 43:39–46Google Scholar
  8. Yardley CP, Fitzsimonis CL, Weaver LC (1989) Cardiac and peripheral vascular contributions to hypotension in spinal cats. Am J Physiol 257(Heart Circ Physiol 26):H1347–H1353PubMedGoogle Scholar

Cardiovascular Drug Challenging Experiments in Anesthetized Dogs

  1. Corman LE, diPalma JR (1967) Animal techniques for measuring drug effects on various peripheral vascular beds. In: Siegler PE, Moyer JH (eds) Animal and clinical pharmacologic techniques in drug evaluation, vol II. Year Book Medical, Chicago, pp 434–443Google Scholar
  2. Hoppe JO, Brown TG Jr (1964) Animal techniques for evaluating autonomic blocking agents, antihypertensive and vasodilator drugs. In: Nodine JE, Siegler PE (eds) Animal and clinical pharmacologic techniques in drug evaluation, vol I. Year Book Medical, Chicago, pp 116–121Google Scholar

Hemodynamic Analysis in Anaesthetized Dogs

  1. Aisaka K, Hidaka T, Hattori Y, Inomata N, Ishihara T, Satoh F (1988) General pharmacological studies on N-(2,6-dimethyl-phenyl)-8-pyrrolizidineacetamide hydrochloride hemihydrate. 3rd communication: effect on cardiovascular system. Arzneim Forsch/Drug Res 38:1417–1425Google Scholar
  2. Bohn H, Martorana PA, Schönafinger K (1992) Cardiovascular effects of the new nitric oxide donor, pirsidomine. Hemodynamic profile and tolerance studies in anesthetized and conscious dogs. Eur J Pharmacol 220:71–78PubMedGoogle Scholar
  3. Carbonell LF, Salom MG, Salazar FJ, Garcia-Estañ J, Ubeda M, Queseda T (1985) Normal hemodynamic parameters in conscious Wistar rats. Rev Esp Fisiol 41:437–442PubMedGoogle Scholar
  4. Franks PJ, Hooper RH, Humphries RG, Jones PR, O’Connor SE (1990) Effective pulmonary flow, aortic flow and cardiac output: in vitro and in vivo comparisons in the dog. Exp Physiol 75:95–106PubMedGoogle Scholar
  5. Martorana PA, Kettenbach B, Bohn H, Schönafinger K, Henning R (1994) Antiischemic effects of pirsidomine, a new nitric oxide donor. Eur J Pharmacol 257:267–273PubMedGoogle Scholar
  6. Millard RW (1984) Cardiac and vascular measurements in conscious and anesthetized animals. In: Schwartz A (ed) Methods in pharmacology, vol 5, Myocardial Biology. Plenum Press, New York/London, pp 167–174Google Scholar
  7. Müller B, Mannesmann G (1981) Measurement of cardiac output by the thermodilution method in rats. II Simultaneous measurement of cardiac output and blood pressure in conscious rats. J Pharmacol Methods 5:29–34PubMedGoogle Scholar
  8. Rajagopalan R, Ghate AV, Subbarayan P, Linz W, Schoelkens BA (1993) Cardiotonic activity of the water soluble forskoline derivative 8,13-epoxy-6β-(piperidinoacetoxy)-1α,7β,9α-tri-hydroxy-labd-14-en-11-one. Arzneim Forsch/Drug Res 43(I):313–319Google Scholar
  9. Richardson AW, Cooper T, Pinakatt T (1962) Thermodilution method for measuring cardiac output of rats by using a transistor bridge. Science 135:317–318PubMedGoogle Scholar
  10. Rooke GA, Feigl EO (1982) Work as a correlate of canine left ventricular oxygen consumption, and the problem of catecholamine oxygen wasting. Circ Res 50:273–286PubMedGoogle Scholar
  11. Rosas R, Montague D, Gross M, Bohr DF (1964) Cardiac action of vasoactive polypeptides in the rat. I. Bradykinin. II Angiotensin. Circ Res 16:150–161Google Scholar
  12. Salyers AK, Rozek LF, Bittner SE, Walsh GM (1988) Simultaneous determination of ventricular function and systemic hemodynamics in the conscious rat. J Pharmacol Methods 19:267–274PubMedGoogle Scholar
  13. Schölkens BA, Becker RHA, Kaiser J (1984) Cardiovascular and antihypertensive activities of the novel nonsulfhydryl converting enzyme inhibitor 2-[N-[(S)-1-ethoxycarbonyl-3-phenylpropyl]-l-alanyl]-(1S,3S,5S)-2-azabicyclo[3.3.0]octane-3-carboxylic acid (Hoe 498). Arzneim Forsch/Drug Res 34:1417–1425Google Scholar
  14. Schölkens BA, Martorana PA, Göbel H, Gehring D (1986) Cardiovascular effects of the converting enzyme inhibitor ramipril (Hoe 498) in anesthetized dogs with acute ischemic left ventricular failure. Clin Exp Theory Pract A8(6):1033–1048Google Scholar
  15. Smiseth OA, Mjøs OD (1982) A reproducible and stable model of acute ischemic left ventricular failure in dogs. Clin Physiol 2:225–239PubMedGoogle Scholar
  16. Sweet CS, Ludden CT, Frederick CM, Ribeiro LGT (1984) Hemodynamic effects of angiotensin and renin inhibition in dogs with acute left ventricular failure. Am J Med 77:7–12PubMedGoogle Scholar
  17. Valdes-Cruz LM, Horowitz S, Sahn DJ, Larson D, Lima CO, Mesel E (1984) Validation of a Doppler echocardiographic method for calculating severity of discrete stenotic obstructions in a canine preparation with a pulmonary arterial band. Circulation 69:1177–1181PubMedGoogle Scholar

Hemodynamic Measurements in Conscious Dogs

  1. Bohn H, Rosenstein B (1986) Technical notes on chronic fluidfilled catheters and renal artery constrictors for testing hemodynamic drug effects in conscious hypertensive dogs. J Pharmacol Methods 16:227–238PubMedGoogle Scholar
  2. Grohs JG, Huber S, Raberger G (1993) Simultaneous assessment of cardiac output with pulsed Doppler and electromagnetic flowmeters during cardiac stimulation. J Pharmacol Toxicol Methods 30:33–38PubMedGoogle Scholar
  3. Hartman JC, Warltier DC (1990) A model of multivessel coronary artery disease using conscious, chronically instrumented dogs. J Pharmacol Methods 24:297–310PubMedGoogle Scholar
  4. Hashimoto K, Kinoshita M, Ohbayashi Y (1991) Coronary effects of nicorandil in comparison with nitroglycerin in chronic conscious dogs. Cardiovasc Drugs Ther 5:131–138PubMedGoogle Scholar
  5. Hintze TH, Vatner SF (1983) Comparison of effects of nifedipine and nitroglycerin on large and small coronary arteries and cardiac function in dogs. Circ Res 52(Suppl I):139–146Google Scholar
  6. Hof RP, Hof A, Stürm RP (1990) The Doppler method for measuring cardiac output in conscious rabbits: validation studies, uses, and limitations. J Pharmacol Methods 24:263–276PubMedGoogle Scholar
  7. Mann WA, Landi MS, Horner E, Woodward P, Campbell S, Kinter LB (1987) A simple procedure for direct blood pressure measurement in conscious dogs. Lab Anim Sci 37:105–108PubMedGoogle Scholar
  8. Müller-Schweinitzer E (1984) The recording of venous compliance in the conscious dog: a method for the assessment of vasoconstrictor agents. J Pharmacol Methods 12:53–58PubMedGoogle Scholar
  9. Rajagopalan R, Ghate AV, Subbarayan P, Linz W, Schoelkens BA (1993) Cardiotonic activity of the water soluble forskoline derivative 8,13-epoxy-6β-(piperidinoacetoxy)-1α,7β,9α-trihydroxy-labd-14-en-11-one. Arzneim Forsch/Drug Res 43(I) 313–319Google Scholar
  10. Sarazan RD (1991) The chronically instrumented conscious dog model. In: 7th Freiburg focus on biomeasurement. Cardio-vascular and respiratory in vivo studies. Biomesstechnik-Verlag March GmbH, 79232 March, pp 37–44Google Scholar
  11. Shimshak TM, Preuss KC, Gross GJ, Brooks HL, Warltier DC (1986) Recovery of contractile function in postischemic reperfused myocardium of conscious dogs: influence of nicorandil, a new antianginal agent. Cardiovasc Res 20:621–626PubMedGoogle Scholar
  12. Vatner SF, Higgins CB, Franklin D, Braunwald E (1971) Effect of a digitalis glycoside on coronary and systemic dynamics in conscious dogs. Circ Res 28:470–479PubMedGoogle Scholar
  13. Wright A, Raval P, Eden RJ, Owen DAA (1987) Histamine H1-receptor antagonist activity assessed in conscious dogs. J Pharmcol Methods 18:123–129Google Scholar

Hemodynamic Studies in Monkeys

  1. Lacour C, Roccon A, Cazaubon C, Segondy D, Nisato D (1993) Pharmacological study of SR 47436, a non-peptide angiotensin II AT1-receptor antagonist, in conscious monkeys. J Hypertens 11:1187–1194Google Scholar
  2. Linz W, Klaus E, Albus U, Becker R, Mania D, Englert HC, Schölkens BA (1992) Cardiovascular effects of the novel potassium channel opener (3S,4R)-3-hydroxy-2,2-dimethyl-4-(2-oxo-1-pyrrolidinyl)-6-phenylsulfonyl- chromane hemihydrate. Arzneim-Forsch/Drug Res 42:1180–1185Google Scholar

Measurement of Cardiac Output and Regional Blood Flow with Microspheres

  1. Bonnacrossi A, Dejana E, Qunintana A (1978) Organ blood flow measured with microspheres in the unanesthetized rat: effects of three room temperatures. J Pharmacol Methods 1:321–328Google Scholar
  2. Faraci FM, Heistad DD (1992) Does basal production of nitric oxide contribute to regulation of brain-fluid balance? Am J Physiol 262:H340–H344PubMedGoogle Scholar
  3. Flaim SF, Nellis SH, Toggart EJ, Drexler H, Kanda K, Newman ED (1984) Multiple simultaneous determinations of hemodynamics and flow distribution in conscious rats. J Pharmacol Methods 11:1–39PubMedGoogle Scholar
  4. Gross GJ, Auchampach JA, Maruyama M, Warltier DC, Pieper GM (1992) Cardioprotective effects of nicorandil. J Cardiovasc Pharmacol 20(Suppl 3):S22–S28PubMedGoogle Scholar
  5. Grover GJ, Sleph PG, Dzwonczyk S (1990) Pharmacological profile of cromakalim in the treatment of myocardial ischemia in isolated rat hearts and anesthetized dogs. J Cardiovasc Pharmacol 16:853–864PubMedGoogle Scholar
  6. Heymann MA, Payne BD, Hoffmann JIE, Rudolph AM (1977) Blood flow measurements with radionuclide-labeled particles. Prog Cardiovasc Dis 20:55–79PubMedGoogle Scholar
  7. Hof RP, Wyler F, Stalder G (1980) Validation studies for the use of the microsphere method in cats and young minipigs. Basic Res Cardiol 75:747–756PubMedGoogle Scholar
  8. Ishise S, Pegram BL, Yamamoto J, Kitamura Y, Frohlich ED (1980) Reference sample microsphere method: cardiac output and blood flows in conscious rat. Am J Physiol 239:H443–H449PubMedGoogle Scholar
  9. Kovách AGB, Szabó C, Benyó Z, Csaki C, Greenberg JH, Reivich M (1992) Effects of N G-nitro-l-arginine and l-arginine on regional cerebral blood flow in the cat. J Physiol 449:183–196PubMedCentralPubMedGoogle Scholar
  10. Kowallik P, Schulz R, Guth BD, Schade A, Pfaffhausen W, Gross R, Heusch G (1991) Measurement of regional myocardial blood flow with multiple colored microspheres. Circulation 83:974–982PubMedGoogle Scholar
  11. McDevitt DG, Nies AS (1976) Simultaneous measurement of cardiac output and its distribution with microspheres in the rat. Cardiovasc Res 10:494–498PubMedGoogle Scholar
  12. Stanek KA, Coleman TG, Smith TL, Murphy WR (1985) Two hemodynamic problems commonly associated with the microsphere technique for measuring regional blood flow in rats. J Pharmacol Methods 13:117–124PubMedGoogle Scholar

Carotid Artery Loop Technique

  1. Child CG, Glenn F (1938) Modification of van Leersum carotid loop for determination of systolic blood pressure in dogs. Arch Surg 36:381–385Google Scholar
  2. Kaczmarczyk G, Schimmrich B, Mohnhaupt R, Reinhardt HM (1979) Atrial pressure and postprandial volume regulation in conscious dogs. Pflüger’s Arch Eur J Physiol 38:143–150Google Scholar
  3. Lagutchik MS, Sturgis JW, Martin DG, Bley JA (1992) Review of the carotid loop procedure in sheep. J Invest Surg 5:79–89PubMedGoogle Scholar
  4. Lewis G, Ponte J, Purves MJ (1980) Fluctuations of P(a), (CO2) with the same period as respiration in the cat. J Physiol Lond 298:1–111PubMedCentralPubMedGoogle Scholar
  5. Meyer M, Hahn G, Buess C, Mesch U, Piiper J (1989a) Pulmonary gas exchange in panting dogs. J Appl Physiol 66:1258–1263PubMedGoogle Scholar
  6. Meyer M, Hahn G, Piiper J (1989b) Pulmonary gas exchange in panting dogs: a model for high frequency ventilation. Acta Anaesthesiol Scand 33(Suppl 90):22–27Google Scholar
  7. O’Brien DJ, Chapman WH, Rudd FV, McRoberts JW (1971) Carotid artery loop method of blood pressure measurement in the dog. J Appl Physiol 30:161–163PubMedGoogle Scholar
  8. Valli VEO, McSherry BJ, Archibald J (1967) The preparation and use of carotid loops. Can Vet J 8:209–211PubMedCentralPubMedGoogle Scholar
  9. van Leersum EC (1911) Eine Methode zur Erleichterung der Blutdruckmessung bei Tieren. Pfluegers Arch Gesame Physiol Menschen Tiere 142:377–395Google Scholar

Measurement of Heart Dimensions in Anesthetized Dogs

  1. Barnes GE, Horwith LD, Bishop VS (1979) Reliability of the maximum derivatives of left ventricular pressure and internal diameter as indices of the inotropic state of the depressed myocardium. Cardiovasc Res 13:652–662PubMedGoogle Scholar
  2. Bishop VS, Horwitz LD (1971) Effects of altered autonomic control on left ventricular function in conscious dogs. Am J Physiol 221:1278–1282PubMedGoogle Scholar
  3. Fiedler VB, Oswald S, Göbel H, Faber W, Scholtholt J (1980) Determination of left ventricular dimensions with ultrasound. J Pharmacol Methods 3:201–219PubMedGoogle Scholar
  4. Horwitz LD, Bishop VS (1972) Left ventricular pressure-dimension relationships in the conscious dog. Cardiovasc Res 6:163–171PubMedGoogle Scholar
  5. Novosel D, Hof A, Evenou JP, Hof PP (1992) Assessment of right ventricle dimensions with microsonometry in anesthetized rabbits. J Pharmacol Toxicol Methods 28:73–77PubMedGoogle Scholar
  6. Stinson EB, Rahmoeller G, Tecklenberg PL (1974) Measurement of internal left ventricular diameter by tracking sonomicrometer. Cardiovasc Res 8:283–289PubMedGoogle Scholar
  7. Suga H, Sagawa K (1974) Assessment of absolute volume from diameter of the intact canine left ventricular cavity. J Appl Physiol 36:496–499PubMedGoogle Scholar

Telemetric Monitoring of Cardiovascular Parameters in Rats

  1. Astley CA, Smith OA, Ray RD, Golanov EV, Chesney MA, Chalyan VG, Taylor DJ, Bowden DM (1991) Integrating behavior and cardiovascular response: the code. Am J Physiol Regul Integr Comp Physiol 261:R172–R181Google Scholar
  2. Basil MK, Krulan C, Webb RL (1993) Telemetric monitoring of cardiovascular parameters in conscious spontaneously hypertensive rats. J Cardiovasc Pharmacol 22:897–905Google Scholar
  3. Becker RHA, Baldes L, Furst U, Schulze KJ (1997) Sustained diurnal blood pressure reduction in SHR with ramipril assessed by telemetric monitoring. Clin Exp Hypertens 19:1233–1246PubMedGoogle Scholar
  4. Brockway BP, Medvedev OS (1991) Circulatory studies on rats using telemetry instrumentation and methodology. In: 7th Freiburg focus on biomeasurement. Cardiovascular and respiratory in vivo studies. Biomesstechnik-Verlag March GmbH, 79232 March, pp 142–147Google Scholar
  5. Brockway BP, Hassler CR (1993) Application of radiotelemetry to cardiovascular measurements in pharmacology and toxicology. In: Salem H, Baskin SI (eds) New technologies and concepts for reducing drug toxicities. CRC Press, Boca Raton, pp 109–132Google Scholar
  6. Brockway BP, Mills PA, Azar SH (1991) A new method for continuous chronic measurement and recording of blood pressure, heart rate and activity via radiotelemetry. Clin Exp Hypertens Theory Pract A13:885–895Google Scholar
  7. Calhoun DA, Zhu S, Wyss JM, Oparil S (1994) Diurnal blood pressure variations and dietary salt in spontaneously hypertensive rats. Hypertension 24:1–7PubMedGoogle Scholar
  8. Carlson SH, Wyss JM (2000) Long-term telemetric recording of arterial pressure and heart rate in mice fed basal and high NaCl diets. Hypertension 35:e1–e5PubMedGoogle Scholar
  9. Clement JG, Mills P, Brockway B (1989) Use of telemetry to record body temperature and activity in mice. J Pharmacol Methods 21:129–140PubMedGoogle Scholar
  10. DePasquale MJ, Ringer LW, Winslow RL, Buchholz R, Fossa AA (1994) Chronic monitoring of cardiovascular function in the conscious guinea pig using radiotelemetry. Hypertension 16:245–260Google Scholar
  11. Desjardins S, Cauchy MJ, Kozliner A (1996) The running cardiomyopathic hamster with continuous telemetric ECG: a new heart failure model to evaluate ‘symptoms’, cause of death and heart rate. Exp Clin Cardiol 1:29–36Google Scholar
  12. Diamant M, von Wolfswinkel L, Altorffer B, de Wied D (1993) Biotelemetry: adjustment of a telemetry system for simultaneous measurement of acute heart rate changes and behavioral events in unrestrained rats. Physiol Behav 53:1121–1126PubMedGoogle Scholar
  13. Griffin KA, Picken M, Bidani AK (1994) Radiotelemetric BP monitoring, antihypertensives and glomeruloprotection in remnant kidney model. Kidney Int 46:1010–1018PubMedGoogle Scholar
  14. Guillet MC, Molinié B, Laduron PM, Terlain B (1990) Effects of ketoprofen in adjuvant-induced arthritis measured in a new telemetric model test. Eur J Pharmacol 183:2266–2267Google Scholar
  15. Guiol C, Ledoussal C, Surgé JM (1992) A radiotelemetry system for chronic measurement of blood pressure and heart rate in the unrestrained rat. Validation of the method. J Pharmacol Toxicol Methods 28:99–105PubMedGoogle Scholar
  16. Hess P, Clozel M, Clozel JP (1996) Telemetric monitoring of pulmonary pressure in freely moving rats. J Appl Physiol 81:1027–1032PubMedGoogle Scholar
  17. Kinter LB (1996) Cardiovascular telemetry and laboratory animal welfare: new reduction and refinement alternatives (Abstract). In: General Pharmacology/Safety Pharmacology Meeting. Philadelphia, PAGoogle Scholar
  18. Kramer K, Dijkstra H, Bast A (1993a) Control of physical exercise in rats in a swimming basin. Physiol Behav 53:271–276PubMedGoogle Scholar
  19. Kramer K, van Acker SABE, Voss HP, Grimbergen JA, van der Vijgh WJF, Bast A (1993b) Use of telemetry to record electrocardiogram and heart rate in freely moving mice. J Pharmacol Toxicol Methods 30:209–215PubMedGoogle Scholar
  20. Kramer K, Grimbergen JA, van der Gracht L, van Jeperen DJ, Jonker RJ, Bast A (1995) The use of telemetry to record electrocardiogram and heart rate in freely swimming rats. Methods Find Exp Clin Pharmacol 17:107–112PubMedGoogle Scholar
  21. Kuwahara M, Yayou KI, Ishii K, Hashimoto SI, Tsubone H, Sugano S (1994) Power spectral analysis of heart rate variability as a new method for assessing autonomic activity in the rat. J Electrocardiol 27:333–337PubMedGoogle Scholar
  22. Lee JY, Brune ME, Warner RB, Buckner SB, Winn M, De B, Zydowsky TM, Opgenorth TJ, Kerkman DJ, De-Berhardis JF (1993) Antihypertensive activity of ABBOTT-81282, a nonpeptide angiotensin II antagonist, in the renal hypertensive rat. Pharmacology 47:176–187PubMedGoogle Scholar
  23. Lemmer B, Mattes A, Böhm M, Ganten D (1993) Circadian blood pressure variation in transgenic hypertensive rats. Hypertension 22:97–101PubMedGoogle Scholar
  24. Lemmer B, Witte K, Makabe T, Ganten D, Mattes A (1994) Effects of enalaprilat on circadian profiles in blood pressure and heart rate of spontaneously and transgenic hypertensive rats. J Cardiovasc Pharmacol 23:311–314PubMedGoogle Scholar
  25. Lemmer B, Witt K, Minors D, Waterhouse J (1995) Circadian rhythms of heart rate and blood pressure in four strains of rat: difference due to, and separate from locomotor activity. Biol Rhythm Res 26:493–504Google Scholar
  26. Mattes A, Lemmer B (1991) Effects of amlodipine on circadian rhythms in blood pressure, heart rate, and motility: a telemetric study in rats. Chronobiol Int 8:526–538PubMedGoogle Scholar
  27. Morimoto K, Morimoto A, Nakamori T, Tan N, Minagawa T, Murakami N (1992) Cardiovascular responses induced in free-moving rats by immune cytokines. J Physiol 448:307–320PubMedCentralPubMedGoogle Scholar
  28. Rubini R, Porta A, Baselli G, Cerutti S, Paro M (1993) Power spectrum analysis of cardiovascular variability monitored by telemetry in conscious unrestrained rats. J Auton Nerv Syst 45:181–190PubMedGoogle Scholar
  29. Sato K, Kandori H, Sato SH (1994) Evaluation of a new method using telemetry for monitoring the left ventricular pressure in free-moving rats. J Pharmacol Toxicol Methods 31:191–198PubMedGoogle Scholar
  30. Sato K, Chatani F, Sato S (1995) Circadian and short-term variabilities in blood pressure and heart rate measured by telemetry in rabbits and rats. J Auton Nerv Syst 54:235–246PubMedGoogle Scholar
  31. Savory CJ, Kostal L (1997) Application of a telemetric system for chronic measurement of blood pressure, heart rate, EEG and activity in the chicken. Physiol Behav 61:963–969PubMedGoogle Scholar
  32. Schnell CR, Wood JM (1993) Measurement of blood pressure and heart rate by telemetry in conscious, unrestrained marmosets. Am J Physiol 264(Heart Circ Physiol 33):H1509–H1516PubMedGoogle Scholar
  33. Sgoifo A, Stilli D, deBoer SF, Koolhaas JM, Musso E (1998) Acute social stress and cardiac electrical activity in rats. Aggress Behav 24:287–296Google Scholar
  34. Smith OA, Astley CA, Spelman FA, Golanov EV, Chalyan VG, Bowden DM, Taylor DJ (1993) Integrating behavior and cardiovascular responses: posture and locomotion. I. Static analysis. Am J Physiol 265(Regul Integr Comp Physiol 34):R1458–R1568PubMedGoogle Scholar
  35. Symons JD, Pitsillides KF, Longhurst CJ (1992) Chronic reduction of myocardial ischemia does not attenuate coronary collateral development in miniswine. Circulation 86:660–671PubMedGoogle Scholar
  36. Tornatzky W, Miczek KA (1993) Long-term impairment of autonomic circadian rhythms after brief intermittent social stress. Physiol Behav 53:983–993PubMedGoogle Scholar
  37. van den Buuse M (1994) Circadian rhythms of blood pressure, heart rate, and locomotor activity in spontaneously hypertensive rats as measured with radiotelemetry. Physiol Behav 55:783–786PubMedGoogle Scholar
  38. van den Buuse M, Malpas SC (1997) 24-Hour recordings of blood pressure, heart rate and behavioural activity in rabbits by radiotelemetry: effects of feeding and hypertension. Physiol Behav 62:83–89PubMedGoogle Scholar
  39. Webb RL, Navarrete AE, Davis S, de Gasparo M (1998) Synergistic effects of combined converting enzyme inhibition and angiotensin II antagonism on blood pressure in conscious telemetered spontaneously hypertensive rats. J Hypertens 16:843–852PubMedGoogle Scholar
  40. Witte K, Schnecko A, Buijs R, van der Vliet J, Scalbert E, Delagrange P, Guardiola-Lemaître B, Lemmer B (1998) Effects of SCN lesions on circadian blood pressure rhythm in normotensive and transgenic hypertensive rats. Chronobiol Int 15:135–145PubMedGoogle Scholar
  41. Yonezawa Y, Caldwell WM, Schadt JC, Hahn AW (1989) A miniaturized ultrasonic flowmeter and telemetry transmitter for chronic animal blood flow measurements. Biomed Sci Instrum 25:107–111PubMedGoogle Scholar
  42. Yonezawa Y, Nakayama T, Ninomija I, Caldwell WM (1992) Radiotelemetry directional ultrasonic blood flowmeter for use with unrestrained animals. Med Biol Eng Comput 30:659–665PubMedGoogle Scholar

Cardiovascular Effects After Intracerebroventricular Administration

  1. Feldberg W, Sherwood SL (1954) Injections of drugs into the lateral ventricle of the cat. J Physiol 123:148–167PubMedCentralPubMedGoogle Scholar
  2. Hayden JF, Johnson LR, Maickel RP (1966) Construction and implantation of a permanent cannula for making injections into the lateral ventricle of the rat brain. Life Sci 5:1509–1515PubMedGoogle Scholar
  3. Mastrianni JA, Harris TM, Ingenito AJ (1986) An intracerebroventricular perfusion system developed for the study of centrally acting antihypertensive drugs in the rat. J Pharmacol Methods 16:63–72PubMedGoogle Scholar
  4. Timmermans PBMWM (1984) Centrally acting hypotensive drugs. In: van Zwieten PA (ed) Handbook of hypertension, vol 3, Pharmacology of antihypertensive drugs. Elsevier, Amsterdam, pp 102–153Google Scholar

Influence on Orthostatic Hypotension

  1. Baum T, Vliet GV, Glennon JC, Novak PJ (1981) Antihypertensive and orthostatic responses to drugs in conscious dogs. J Pharmacol Methods 6:21–32PubMedGoogle Scholar
  2. Boura ALA, Green AF (1959) The actions of bretylium: adrenergic neuron blocking and other effects. Br J Pharmacol 14:536–548Google Scholar
  3. Humphrey SJ, McCall RB (1982) A rat model for predicting orthostatic hypotension during acute and chronic antihypertensive drug therapy. J Pharmacol Methods 25:25–34Google Scholar
  4. Lee CH, Strosber AM, Roszkowski AP, Warren LA (1982) A model for evaluation of postural hypotension induced by drugs in conscious restrained normotensive rats. J Pharmacol Methods 7:15–24PubMedGoogle Scholar
  5. Martel E, Champeroux P, Lacolley P, Richard S, Safar M, Cuche JL (1996) Central hypervolemia in the conscious rat: a model of cardiovascular deconditioning. J Appl Physiol 80:1390–1396PubMedGoogle Scholar
  6. Martel E, Ponchon P, Champeroux P, Elghozi JL, de la Faverie JF R, Dabire H, Pannier B, Richard S, Safar M, Cuche JL (1998) Mechanism of cardiovascular deconditioning induced by tail suspension in the rat. Am J Physiol 274(5 Pt2):H1667–H1673PubMedGoogle Scholar
  7. Pals DT, Orley J (1983) A none human primate model for evaluating the potential of antihypertensive drugs to cause orthostatic hypotension. J Pharmacol Methods 9:183–192PubMedGoogle Scholar
  8. Socci RR, Wang M, Thierry-Palmer M, Emmett N, Bayorh MA (2000) Cardiovascular responses to simulated microgravity in Sprague–Dawley rats. Clin Exp Hypertens 22:155–164PubMedGoogle Scholar
  9. Sponer G, Mannesmann G, Bartsch W, Dietmann K (1981) A method for evaluating postural hypotension in conscious rabbits as a model to predict effects of drugs in man. J Pharmacol Methods 5:53–58PubMedGoogle Scholar
  10. Takata Y, Kurihara J, Suzuki S, Okubo Y, Kato H (1999) A rabbit model for evaluation of chlorpromazine-induced orthostatic hypotension. Biol Pharm Bull 22:457–462PubMedGoogle Scholar

Bezold-Jarisch Reflex

  1. Andrews PLR, Bhandari P (1993) Resiniferatoxin, an ultrapotent capsaicin analogue, has anti-emetic properties in the ferret. Neuropharmacology 32:799–806PubMedGoogle Scholar
  2. Aviado DM, Guavera-Aviado D (2001) The Bezold-Jarisch reflex. A historical perspective of cardiopulmonary reflexes. Ann NY Acad Sci 940:48–58PubMedGoogle Scholar
  3. Barron KW, Bishop VS (1982) Reflex cardiovascular changes with veratridine in the conscious dog. Am J Physiol Heart Circ Physiol 11:H810–H817Google Scholar
  4. Baugh L, Abraham W, Matthews E, Lahr P (1989) Pharmacological profile of MDL 26,024GO: a novel antiasthmatic agent. Agents Actions 27:431–434PubMedGoogle Scholar
  5. Blower PR (1990) The role of specific 5-HT3 receptor antagonism in the control of cytostatic drug induced emesis. Eur J Cancer 26(Suppl 1):S8–S11PubMedGoogle Scholar
  6. Chen HI (1979) Interaction between the baroreceptor and Bezold-Jarisch reflexes. Am J Physiol 6:H655–H661Google Scholar
  7. Cohen ML, Bloomquist W, Gidda JS, Lacefield W (1989) Comparison of the 5-HT3 receptor antagonist properties of ICS 205–930, GR38032 and zacopride. J Pharmacol Exp Ther 248:197–201PubMedGoogle Scholar
  8. Delagrange P, Emerit MB, Merahi N, Abraham C, Morain P, Rault S, Renard P, Pfeiffer B, Guardiola-Lemaitre P, Hamon M (1996) Interaction of S 21007 with 5-HT3 receptors. In vitro and in vivo characterization. Eur J Pharmacol 316:195–203PubMedGoogle Scholar
  9. De Vries P, Apaydin S, Villalon CM, Heiligers JPC, Saxena PR (1997) Interaction of GR127935, a 5-HT1B/D receptor ligand with functional 5-HT receptors. Naunyn Schmiedeberg’s Arch Pharmacol 355:423–430Google Scholar
  10. Eglen RM, Lee CH, Khabbaz M, Fontana DJ, Daniels S, Kilfoil T, Wong EHF (1994) Comparison of potencies of 5-HT3 receptor antagonists at inhibiting aversive behavior to illumination and the von Bezold-Jarisch reflex in the mouse. Neuropharmacology 33:227–234PubMedGoogle Scholar
  11. Eglen RM, Lee CH, Smith WL, Johnson LG, Clark R, Whiting RL, Hedge SS (1995) Pharmacological characterization of RS 25259–197, a novel and selective 5–HT3 receptor antagonist, in vivo. Br J Pharmacol 114:860–866PubMedCentralPubMedGoogle Scholar
  12. Fleckenstein A, Muschaweck R, Bohlinger F (1950) Weitere Untersuchungen über die pharmakologische Ausschaltung des BEZOLD-JARISCH-Reflexes. Naunyn-Schmiedeberg’s Arch Exp Pathol Pharmakol 211:132–142Google Scholar
  13. Fozard JR (1984) MDL 72222: a potent and highly selective antagonist at neuronal 5-hydroxytryptamine receptors. Naunyn Schmiedeberg’s Arch Pharmacol 326:36–44Google Scholar
  14. Geissler MA, Torrente JR, Elson AS, Gylys JA, Wright RN, Iben LG, Davis HH, Yocca FD (1993) Effects of BMY 33462, a selective and potent serotonin type-3 receptor antagonist, on mesolimbic dopamine mediated behavior. Drug Dev Res 29:16–24Google Scholar
  15. Giles TD, Sander GE (1986) Comparative cardiovascular responses to intravenous capsaicin, phenyldiguanide, veratrum alkaloids and enkephalins in the conscious dogs. J Auton Pharmacol 6:1–7PubMedGoogle Scholar
  16. Godlewski G, Göthert M, Malinowska B (2003) Cannabinoid receptor-independent inhibition of cannabinoid agonists of the peripheral 5-HT3 receptor-mediated Bezold-Jarisch reflex. Br J Pharmacol 138:767–774PubMedCentralPubMedGoogle Scholar
  17. Göthert M, Hamon M, Barann M, Bönisch H, Gozlan H, Laguzzi R, Metzenauer P, Nickel B, Szelenyi I (1995) 5-HT3 antagonism by anpirtoline, a mixed 5-HT1 receptor agonist/5-HT3 receptor antagonist. Br J Pharmacol 114:269–274PubMedCentralPubMedGoogle Scholar
  18. Gylys JA, Wright RN, Nicolosi WD, Buyniski JP, Crenshaw RR (1988) BMY 25801, an anti-emetic agent free of D2 dopamine antagonist properties. J Pharmacol Exp Ther 244:830–837PubMedGoogle Scholar
  19. Haga K, Asano K, Inaba K, Morimoto Y, Setoguchi M (1994) Effect of Y-25130, a selective 5-hydroxytryptamine-3 receptor antagonist, on gastric emptying in mice. Arch Int Pharmacodyn Ther 328:344–355PubMedGoogle Scholar
  20. Harron DWG, Kobinger W (1984) Facilitation of the Bezold-Jarisch reflex by central stimulation of alpha-2 adrenoceptors in dogs. Naunyn Schmiedeberg’s Arch Pharmacol 325:193–197Google Scholar
  21. Hegde SS, Wong AG, Perry MR, Ku P, Moy TM, Loeb M, Eglen RM (1995) 5-HT4 receptor mediated stimulation of gastric emptying in rats. Naunyn Schmiedeberg’s Arch Pharmacol 351:589–595Google Scholar
  22. Jarisch A (1940) Vom Herzen ausgehende Kreislaufreflexe. Arch Kreislaufforsch 7:260–274Google Scholar
  23. Jarisch A, Richter H (1939a) Die Kreislaufwirkung des Veratrins. Naunyn Schmiedeberg’s Arch Exp Pathol Pharmakol 193:347–354Google Scholar
  24. Jarisch A, Richter H (1939b) Der Bezold-Effekt – Eine vergessene Kreislaufreaktion. Klin Wochenschr 18:185–187Google Scholar
  25. Kalkman HO, Engel G, Hoyer D (1984) Three distinct subtypes of serotonergic receptors mediate the triphasic blood pressure response to serotonin in rats. J Hypertens 2(Suppl 3):143–145Google Scholar
  26. Kishibayashi N, Ichikawa S, Yokoyama T, Ishii A, Karasawa A (1993) Pharmacological properties of KF19259, a novel 5-HT3 receptor antagonist, in rats: Inhibition of the distal colonic function. Jpn J Pharmacol 63:495–502PubMedGoogle Scholar
  27. López-Tudanca PL, Labeaga L, Innerárity A, Alonso-Cires L, Tapia I, Mosquera R, Orjales A (2003) Synthesis and pharmacological characterization of a new benzoxazole derivative as a potent 5-HT3 receptor agonist. Bioorg Med Chem 11:2709–2714PubMedGoogle Scholar
  28. Malinowska B, Kwolek G, Göthert M (2001) Anandamide and methanandamide induce both vanilloid VR1 and cannabinoid CB1 receptor mediated changes in heart rate and blood pressure in anesthetized rats. Naunyn Schmiedebergs Arch Pharmacol 364:562–569PubMedGoogle Scholar
  29. Matsumoto M, Yoshioka M, Togashi H, Saito H (1992) Effects of ondansetron on cardiovascular reflex to exogenous serotonin in anesthetized rats. Biog Amines 8:443–449Google Scholar
  30. Meller ST, Lewis SJ, Brody MJ, Gebhart GF (1992) Vagal afferent-mediated inhibition of a nociceptive reflex by i.v. serotonin in the rat. II. Role of 5-HT receptor subtypes. Brain Res 585:71–86PubMedGoogle Scholar
  31. Middlefell VC, Bill DJ, Brammer NT, Coleman J, Fletcher A, Hallett I, Rhodes KF, Wainwright TL, Ward TJ (1996) WAY-SEC-579: a novel 5-HT3 receptor antagonist. CNS Drug Rev 2:269–293Google Scholar
  32. Miyata K, Kamato T, Yamano M, Nishida A, Ito H, Katsuyama Y, Yuki H, Tsutsumi R, Ohta M, Takeda M, Honda K (1991) Serotonin 5-HT3 receptor blocking activities of YM060, a novel 4,5,6,7-tetrahydrobenzimidazole derivative and its enantiomer in anesthetized rats. J Pharmacol Exp Ther 259:815–819PubMedGoogle Scholar
  33. Rault S, Lancelot JC, Prunier H, Robba M, Renard P, Delagrange P, Pfeiffer B, Caignard DH, Guardiola-Lemaitre B, Hamon M (1996) Novel selective and partial agonists of 5-HT3 receptors. Part 1. Synthesis and biological evaluation of piperazinopyrrolothienopyrazines. J Med Chem 39:2068–2080PubMedGoogle Scholar
  34. Robertson DW, Bloomquist W, Wong DT, Cohen ML (1992) MCPP but not TFMPP is an antagonist at cardiac 5-HT3 receptors. Life Sci 50:599–605PubMedGoogle Scholar
  35. Rocha I, Rosario LB, de Oliviera EI, Barros MA, Silva-Carvallho L (2003) Enhancement of carotid chemoreceptor reflex and cardiac chemosensitive reflex in the acute phase of myocardial infarction of the anesthetized rabbit. Basic Res Cardiol 98:175–180PubMedGoogle Scholar
  36. Takei N, Takei S, Tomomatsu S, Suzuki K, Yagi S (1995) Augmentation of clonidine on Bezold-Jarisch reflex control of renal sympathetic nerve activity in cats. Jpn J Nephrol 37:12–16Google Scholar
  37. Turconi M, Donetti A, Schiavone A, Sagrada A, Montagna E, Nicola M, Cesana R, Rizzi C, Micheletti R (1991) Pharmacological properties of a novel class of 5-HT3 receptor antagonists. Eur J Pharmacol 203:203–211PubMedGoogle Scholar
  38. Vayssettes-Couchay C, Bouysset F, Laubie M, Verbeuren TJ (1997) Central integration of the Bezold-Jarisch reflex in the cat. Brain Res 74:272–278Google Scholar
  39. von Bezold A, Hirt L (1867) Über die physiologischen Wirkungen des essigsauren Veratrin’s. Untersuchungen aus dem physiologischen Laboratorium Würzburg 1:75–156Google Scholar
  40. Watson JW, Gonsalves SF, Fossa AA, McLean S, Seeger T, Obach S, Andrews PLR (1995) The anti-emetic effects of CP-99,994 in the ferret and the dog: role of the NK1 receptor. Br J Pharmacol 115:84–94PubMedCentralPubMedGoogle Scholar
  41. Yamono M, Ito H, Kamoto T, Miyata K (1995) Species difference in the 5-hydroxytryptamine3 receptor associated with the Bezold-Jarisch reflex. Arch Int Pharmacodyn Ther 330:177–189Google Scholar
  42. Zucker IH, Cornish KG (1981) The Bezold-Jarisch reflex in the conscious dog. Circ Res 49:940–948PubMedGoogle Scholar

Endotoxin Induced Shock

  1. Baldwin G, Alpert G, Caputo GL, Baskin M, Parsonnet J, Gillis ZA, Thompson C, Silber GR, Fleisher GR (1991) Effect of Polymyxin B on experimental shock from meningococcal and Escherichia coli endotoxins. J Infect Dis 164:542–549PubMedGoogle Scholar
  2. Brackett DJ, Schaefer CF, Tompkins P, Fagraeus L, Peters LJ, Wilson MF (1985) Evaluation of cardiac output, total peripheral vascular resistance, and plasma concentrations of vasopressin in the conscious, unrestrained rat during endotoxemia. Circ Shock 17:273–284PubMedGoogle Scholar
  3. Cuzzocrea S, Pisano B, Dugo L, Ianaro A, Patel NSA, di Paola R, Genovese T, Chatterjee PK, Fulia F, Cuzzocrea E, di Rosa M, Caputi AP, Thiemermann C (2004) Rosiglitazone, a ligand of peroxisome proliferator-activated receptor-γ, reduces development of nonseptic shock in mice. Crit Care Med 32:457–466PubMedGoogle Scholar
  4. Galanos C, Freudenberg MA, Reutter W (1979) Galactosamine-induced sensitization to the lethal effects of endotoxin. Proc Natl Acad Sci U S A 76:5939–5943PubMedCentralPubMedGoogle Scholar
  5. Lindenbaum GA, Lerrieu AJ, Carrol SF, Kapusnick RA (1990) Efectos de la cocarboxilasa en perros sometidos a choque septico experimental. Compend Invest Clin Latinoam 10:18–26Google Scholar
  6. Luongo C, Imperatore F, Cuzzocrea S, Filippelli A, Scafuro MA, Mangoni G, Portolano F, Rossi F (1998) Effects of hyperbaric oxygen exposure on a zymosan-induced shock model. Crit Care Med 26:1972–1976PubMedGoogle Scholar
  7. Metz CA, Sheagren JN (1990) Ibuprofen in animal models of septic shock. J Crit Care 5:206–212Google Scholar
  8. Mountz JD, Baker TJ, Borcherding DR, Bluethmann H, Zhou T, Edwards CK (1995) Increased susceptibility of fas mutant MRL-Ipr/Ipr mice to staphylococcal enterotoxin B-induced septic shock. J Immunol 155:4829–4837PubMedGoogle Scholar
  9. Muacevic G, Heuer HO (1992) Platelet-activating factor antagonists in experimental shock. Arzneim Forsch/Drug Res 42:1001–1004Google Scholar
  10. Otterbein L, Lowe VC, Kyle DJ, Noronha-Blob L (1993) Additive effects of a bradykinin antagonist, NPC 17761, and a leumedin, NPC 15669, on survival in animal models. Agents Actions 39(Special Conference Issue):C125–C127PubMedGoogle Scholar
  11. Overbergh L, Decallonne B, Branisteanu DD, Valckx D, Kasran A, Bouillon R, Mathieu C (2003) Acute shock induced by antigen in NOD mice. Diabetes 52:335–342PubMedGoogle Scholar
  12. Schäfer CF, Biber B, Brackett DJ, Schmidt DD, Fagraeus L, Wilson MF (1987) Choice of anesthetic alters the circulatory shock as gauged by conscious rat endotoxemia. Acta Anaesthesiol Scand 31:550–556Google Scholar
  13. Von Asmuth EJ, Maessen JG, van der Linden CJ, Buurman WA (1990) Tumor necrosis factor alpha (TNF-α) and interleukin 6 in a zymosan-induced shock model. Scand J Immunol 32:313–319Google Scholar

Hemorrhagic Shock

  1. Bauer C, Marci I, Bauer M, Fellger H, Larsen R (1995) Interleukin-1 receptor antagonist attenuates leukocyte-endothelial interactions in the liver after hemorrhagic shock in the rat. Crit Care Med 23:1099–1105PubMedGoogle Scholar
  2. Chaudry IH, Sayeed MM, Baue AE (1975) The effect of insulin on glucose uptake in soleus muscle during hemorrhagic shock. Can J Physiol Pharmacol 53:67–73PubMedGoogle Scholar
  3. Davis HA (1941) Physiologic effects of high concentrations of oxygen in experimental secondary shock. Arch Surg 43:1–13Google Scholar
  4. Kitajima T, Tani K, Yamaguchi T, Kubota Y, Okuhira M, Mizuno T, Inoue K (1995) Role of endogenous endothelin in gastric mucosal injury by hemorrhagic shock in rats. Digestion 56:111–116PubMedGoogle Scholar
  5. Lamson PD, de Turk WW (1945) Studies on shock induced by hemorrhage. XI. A method for the accurate control of blood pressure. J Pharmacol Exp Ther 83:250–252Google Scholar
  6. Mills LC (1967) Animal and clinical techniques for evaluating drugs in various types of shock. In: Siegler PF, Moyer JH (eds) Animal and clinical pharmacologic techniques in drug evaluation. Year Book Medical, Chicago, pp 478–492Google Scholar
  7. Selkurt EE, Rothe CF (1961) Critical analysis of experimental shock models. In: Seeley SF, Weisiger JR (eds) Recent progress and present problems in the field of shock. Fed Proc 20(Suppl 9, part III):30–37PubMedGoogle Scholar
  8. Van der Meer C, Valkenburg PW, Snijders PM, Wijnans M, van Eck P (1987) A method for hemorrhagic shock in the rat. J Pharmacol Methods 17:75–82PubMedGoogle Scholar

Tourniquet Shock

  1. Aoki Y, Nata M, Odaira T, Sagisaka K (1992) Suppression of ischemia-reperfusion injury by liposomal superoxide dismutase in rats subjected to tourniquet shock. Int J Leg Med 105:5–9Google Scholar
  2. Chandra P, Dave PK (1970) Effect of dipyrone on tourniquet shock. Arzneim Forsch/Drug Res 20:409–412Google Scholar
  3. Duncan GW, Blalock A (1942) The uniform production of experimental shock by crush injury: possible relationship to clinical crush syndrome. Ann Surg 115:684–694PubMedCentralPubMedGoogle Scholar
  4. Dunn OJ (1961) Multiple comparisons among means. J Am Stat Assoc 56:52–64Google Scholar
  5. Ghussen F, Stock W, Bongartz R (1979) The effect of methylprednisolone on the experimental tourniquet shock in dogs. Res Exp Med 176:87–95Google Scholar
  6. Goto H, Benson KT, Katayama H, Tonooka M, Tilzer LL, Arakawa K (1988) Effect of high-dose of methylprednisolone on tourniquet ischaemia. Can J Anaesth 35:484–488PubMedGoogle Scholar
  7. Haugan A, Kirkebo A (1984) Local blood flow changes in the renal cortex during tourniquet and burn shock in rats. Circ Shock 14:147–157PubMedGoogle Scholar
  8. Horl M, Horl WH (1985) Effect of tourniquet ischemia on carbohydrate metabolism in dog skeletal muscle. Eur Surg Res 17:53–60PubMedGoogle Scholar
  9. Kruskal JB, Wallis WA (1952) Use of ranks in one-criterion variance analysis. J Am Stat Assoc 47:583–621Google Scholar
  10. Little RA (1974) The compensation of post-traumatic oedema in the rabbit at different ages. J Physiol 238:207–221PubMedCentralPubMedGoogle Scholar
  11. Paletta FX, Willman V, Ship AG (1960) Prolonged tourniquet ischemia of extremities. An experimental study on dogs. J Bone Joint Surg 42:945–950Google Scholar
  12. Peto R, Pike MC, Armitage P, Breslow NE, Cox DR, Howard SV, Mantel N, McPherson K, Peto J, Smith PG (1976) Design and analysis of randomized clinical trials requiring prolonged observation of the patient. I. Introduction and design II. Analysis and examples. Br J Cancer 34(6):585–612Google Scholar
  13. Sáez JC, Vivaldi E, Günther B (1982) Tourniquet shock in rats: appearance of lactic dehydrogenase isoenzymes in serum. IRCS Med Sci 10:191–192Google Scholar
  14. Sáez JC, Cifuentes F, Ward PH, Günther B, Vivaldi E (1986) Tourniquet shock in rats: effects of allopurinol on bio-chemical changes of the gastrocnemius muscle subjected to ischemia followed by reperfusion. Biochem Med Metab Biol 35:199–209PubMedGoogle Scholar
  15. Sen PK (1980) Nonparametric simultaneous inference for some MANOVA models. In: Krishnaiah PR (ed) Handbook of statistics, vol 1. North-Holland, Amsterdam/New York, pp 673–702Google Scholar
  16. St V, Prostran M, Savic JD, Varagic VM, Lovric M (1992) Beta-adrenergic receptors and catecholamines in the rat heart during tourniquet trauma. Circ Shock 36:38–44Google Scholar
  17. Van der Meer C, Valkenburg PW, Ariëns AT, van Benthem MJ (1966) Cause of death in tourniquet shock in rats. Am J Physiol 210:513–525PubMedGoogle Scholar
  18. Wilgis EFS (1971) Observations on the effects of tourniquet ischemia. J Bone Joint Surg 53 A:1343–1346Google Scholar

Heat Stroke

  1. Bynum G, Patton J, Bowers W, Leav I, Wolfe D, Hamlet M, Marsili M (1977) An anesthetized dog heat stroke model. J Appl Physiol Respir Environ Exerc Physiol 43:292–296PubMedGoogle Scholar
  2. Chiu WT, Kao TY, Lin MT (1995) Interleukin-1 receptor antagonist increases survival in rat heatstroke by reducing hypothalamic serotonin release. Neurosci Lett 202:33–36PubMedGoogle Scholar
  3. Damanhouri ZA, Tayeb OS (1992) Animal models for heat stroke studies. J Pharmacol Toxicol Methods 28:119–127PubMedGoogle Scholar
  4. Francesconi RP, Mager M (1978) Heat-injured rats: pathochemical indices and survival time. J Appl Physiol Respir Environ Exerc Physiol 45:1–6PubMedGoogle Scholar
  5. Hubbard RW, Bowers WD, Matthew WT, Curtis FC, Criss REL, Sheldon GM, Ratteree JW (1977) Rat model of acute heat-stroke mortality. J Appl Physiol Respir Environ Exerc Physiol 42:809–816PubMedGoogle Scholar
  6. Hubbard RW, Criss REL, Elliott LP, Kelly C, Matthew WT, Bowers WD, Mager M (1979) Diagnostic significance of selected serum enzymes in a rat heatstroke model. J Appl Physiol Respir Environ Exerc Physiol 46:334–339PubMedGoogle Scholar
  7. Kielblock AJ, Strydom NB, Burger FJ, Pretorius PJ, Manjoo M (1982) Cardiovascular origins of heatstroke pathophysiology: an anesthetized rat model. Aviat Space Environ Med 53:171–178PubMedGoogle Scholar
  8. Kregel KC, Wall PT, Gisolfi CV (1988) Peripheral vascular responses to hyperthermia in the rat. J Appl Physiol 64:2582–2588PubMedGoogle Scholar
  9. Shido O, Nagasaka T (1990) Thermoregulatory responses to acute body heating in rats acclimated to continuous heat exposure. J Appl Physiol 68:59–65PubMedGoogle Scholar
  10. Shih CJ, Lin MS, Tsai SH (1984) Experimental study on the pathogenesis of heat stroke. J Neurosurg 60:1252–1264Google Scholar
  11. Tayeb OS, Marzouki ZM (1990) Effect of dantrolene pretreatment on heat stroke in sheep. Pharmacol Res 22:565–572PubMedGoogle Scholar

α- and β-Adrenoreceptors in the Mouse Iris

  1. Berridge TL, Sadie B, Roach AG, Tulloch IF (1983) α 2-adrenoceptor agonists induce mydriasis in the rat by an action within the CNS. Br J Pharmacol 78:507–515PubMedCentralPubMedGoogle Scholar
  2. Blackman JG, Fastier FN, Patel CM, Wong LCK (1956) Assessment of depressor activity and mydriatic activity of hexamethonium analogues. Br J Pharmacol 11:282–288Google Scholar
  3. Burn JH, Finney DJ, Goodwin LG (1950) Biological standardization. Oxford University Press, London, pp 320–324Google Scholar
  4. Bynke G, Håkanson R, Hörig J, Leander S (1983) Bradykinin contracts the pupillary sphincter and evokes ocular inflammation through release of neuronal substance P. Eur J Pharmacol 91:469–475PubMedGoogle Scholar
  5. Edge ND (1953) Mydriasis in the mouse: a quantitative method of estimating parasympathetic ganglion block. Br J Pharmacol Chemother 8:10–14Google Scholar
  6. Freundt KJ (1965) Adrenergic alpha- and beta-receptors in the mouse iris. Nature 206:725–726PubMedGoogle Scholar
  7. Gower AJ, Broekkamp CLE, Rijk HW, van Delft AME (1988) Pharmacological evaluation of in vivo tests for α 2-adrenoceptor blockade in the central nervous system and the effects of mianserin and its aza-analog ORG 3770. Arch Int Pharmacodyn 291:185–201Google Scholar
  8. Håkanson R, Beding B, Erkman R, Heilig M, Wahlestedt C, Sundler F (1987) Multiple tachykinin pools in sensory nerve fibres in the rabbit iris. Neuroscience 21:943–950PubMedGoogle Scholar
  9. Hey JA, Gherezghiher T, Koss MC (1985) Studies on the mechanism of clonidine-induced mydriasis in the rat. Naunyn Schmiedeberg’s Arch Pharmacol 328:258–263Google Scholar
  10. Ing HR, Dawes GS, Wajda I (1945) Synthetic substitutes for atropine. J Pharmacol Exp Ther 85:85–105PubMedGoogle Scholar
  11. Kern R (1970) Die adrenergischen Receptoren der intraoculären Muskeln des Menschen. Albrecht Von Graefes Arch Klin Exp Ophthalmol 180:231–248PubMedGoogle Scholar
  12. Koss MC (1986) Pupil dilatation as an index of central nervous system α2-adrenoceptor activation. J Pharmacol Methods 5:1–19Google Scholar
  13. Pulewka P (1932) Das Auge der weißen Maus als pharmakologisches Testobjekt. I. Mitteilung: Eine Methode zur quantitativen Bestimmung kleinster Mengen Atropin und anderer Mydriatika. Naunyn Schmiedeberg’s Arch Exp Pathol Pharmacol 168:307–315Google Scholar
  14. Savontaus E, Raasmaja A, Rouru J, Koulu M, Pesonen U, Virtanen R, Savola JM, Huupponen R (1997) Anti-obesity effect of MPV-1743 A III, a novel imidazoline derivative, in genetic obesity. Eur J Pharmacol 328:207–215PubMedGoogle Scholar
  15. Ueda N, Muramatsu I, Fujiwara M (1984) Capsaicin and bradykinin-induced substance P-ergic Koss MC (1986) Pupillary dilatation as an index for central nervous system α2-adrenoreceptor activation. J Pharmacol Methods 15:1–19Google Scholar

α 2-Adrenoreceptor Blockade Measured In Vivo by Clonidine-Induced Sleep in Chicks

  1. Gower AJ, Broekkamp CLE, Rijk HW, van Delft AME (1988) Pharmacological evaluation of in vivo tests for α2-adrenoceptor blockade in the central nervous system and the effects of mianserin and its aza-analog ORG 3770. Arch Int Pharmacodyn 291:185–201Google Scholar
  2. Pommier Y, Andréjak M, Mouillé P, Dabiré H, Lucet B, Schmitt H (1982) Interaction between mianserin and clonidine at α2-adrenoceptors. Naunyn Schmiedeberg’s Arch Pharmacol 318:288–294Google Scholar

Activity at β 1- and β 2-Adrenoreceptors in the Rat

  1. Gillespie JS, Muir TC (1967) A method of stimulating the complete sympathetic outflow from the spinal cord to blood vessels in the pithed rat. Br J Pharmacol Chemother 30:78–87Google Scholar
  2. Härtfelder G, Kuschinsky G, Mosler KH (1958) Über pharmakologische Wirkungen an elektrisch gereizten glatten Muskeln. Naunyn-Schmiedeberg’s Arch Exp Pathol Pharmakol 234:66–78Google Scholar
  3. Lands AM, Arnold A, McAuliff JP, Ludena FP, Brown TG (1967a) Differentiation of receptor systems activated by sympathetic amines. Nature 214:597–598PubMedGoogle Scholar
  4. Lands AM, Ludena FP, Buzzo HD (1967b) Differentiation of receptors responsive to isoproterenol. Life Sci 6:2241–2249PubMedGoogle Scholar
  5. Lish PM, Weikel JH, Dungan KW (1965) Pharmacological and toxicological properties of two new β-adrenergic receptor antagonists. J Pharmacol Exp Ther 149:161–173PubMedGoogle Scholar
  6. Nathason JA (1985) Differential inhibition of beta adrenergic receptors in human and rabbit ciliary process and heart. J Pharmacol Exp Ther 232:119–126Google Scholar
  7. Piercy V (1988a) Method for assessing the activity of drugs at β 1- and β 2-adrenoreceptors in the same animal. J Pharmacol Methods 20:125–133PubMedGoogle Scholar
  8. Piercy V (1988b) The β-adrenoreceptors mediating uterine relaxation throughout the oestrus cycle of the rat are predominantly of the β 2-subtype. J Auton Pharmacol 8:11–18PubMedGoogle Scholar

β 1- and β 2-Sympatholytic Activity in Dogs

  1. Turner RA (1971) β-adrenergic blocking agents. In: Turner RA, Hebborn P (eds) Screening methods in pharmacology, vol II. Academic, New York/London, pp 21–40Google Scholar

Intrinsic β-Sympathomimetic Activity in Reserpine-Pretreated Dogs

  1. Di Palma (1964) Animal techniques for evaluating sympathomimetic and parasympathomimetic drugs. In: Nodine JH, Siegler PE (eds) Animal and pharmacologic techniques in drug evaluation, vol I. Year Book Medical, Chicago, pp 105–110Google Scholar
  2. Green AF, Boura ALA (1964) Depressants of peripheral sympathetic nerve function. In: Laurence DR, Bacharach AL (eds) Evaluation of drug activities: pharmacometrics. Academic, London/New York, pp 369–430Google Scholar

Cat Nictitating Membrane Preparation (Ganglion Blocking Activity)

  1. Alexander S, Peters J, Mathie A, MacKenzie G, Smith A (2001) TiPS nomenclature supplement 2001, pp 7–12Google Scholar
  2. Badio B, Shi D, Shin Y, Hutchinson KD, Padgett WL, Daly JW (1996) Spiropyrrolizidines, a new class of blockers of nicotinic receptors. Biochem Pharmacol 52:933–939PubMedGoogle Scholar
  3. Boura AL, Green AF (1959) The actions of brethylium: adrenergic neuron blocking and other effects. Br J Pharmacol 14:536–548Google Scholar
  4. Bowman WC, Webb SN (1972) Neuromuscular blocking and ganglion blocking activities of some acetylcholine antagonists in the cat. J Pharm Pharmacol 24:762–772Google Scholar
  5. Claßen HG, Marquardt P, Späth M (1968) Sympathicomimetische Wirkungen von Cyclohexylamin. Arzneim Forsch/Drug Res 18:590–594Google Scholar
  6. Fleckenstein A, Burn JH (1953) The effect of denervation on the action of sympathicomimetic amines on the nictitating membrane. Br J Pharmacol 8:69–78Google Scholar
  7. Gertner SB (1956) Pharmacological studies on the inferior eyelid of the anaesthetized rat. Br J Pharmacol 11:147Google Scholar
  8. Green AF, Boura ALA (1964) Depressants of peripheral sympathetic nerve function. In: Laurence DR, Bacharach AL (eds) Evaluation of drug activities: pharmacometrics. Academic, London/New York, pp 369–430Google Scholar
  9. Gurtu S, Seth S, Roychoudhary AK (1992) Evidence of verapamil-induced functional inhibition of noradrenergic neurotransmission in vivo. Naunyn Schmiedeberg’s Arch Pharmacol 345:172–175Google Scholar
  10. Isola W, Bacq ZM (1946) Innervation symapthique adrénergique de la musculature lisse des paupières. Arch Int Physiol 54:30–48PubMedGoogle Scholar
  11. Karlin A, Akabas MH (1995) Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins. Neuron 15:1231–1244PubMedGoogle Scholar
  12. Koss MC (1992) Comparison of peripheral and central nervous system sympatholytic actions of prazosin using the cat nictitating membrane. Eur J Pharmacol 211:61–67PubMedGoogle Scholar
  13. Koss MC, Hey JA (1992) Activation of histamine H3 receptors produces presynaptic inhibition of neurally evoked cat nictitating membrane responses in vivo. Naunyn Schmiedeberg’s Arch Pharmacol 346:208–212Google Scholar
  14. Langer SZ, Trendelenburg U (1969) The effect of a saturable uptake mechanism on the slopes of dose–response curves for sympathomimetic amines and on the shifts of dose–response curves produced by a competitive antagonist. J Pharmacol Exp Ther 167:117–142PubMedGoogle Scholar
  15. McGehee DS, Role LW (1995) Physiological diversity of nicotinic acetylcholine receptors expressed by vertebrate neurons. Annu Rev Physiol 57:521–546PubMedGoogle Scholar
  16. Quilliam JP, Shand DG (1964) The selectivity of drugs blocking ganglionic transmission in the rat. Br J Pharmacol 23:273–284Google Scholar
  17. Sargent PB (1995) The diversity of neuronal nicotinic acetylcholine receptors. Annu Rev Neurosci 16:403–443Google Scholar
  18. Steinbrecher W, Schmid-Wand M (1986) Das elektrisch gereizte Unterlid der narkotisierten Ratte. Eine alternative Methode zur elektrisch gereizten Nickhaut der narkotisierten Katze. Pers Commun 2000Google Scholar
  19. Trendelenburg U, Haeusler G (1975) Nerve-muscle preparations of the nictitating membrane. In: Daniel EE, Paton DM (eds) Methods in pharmacology, vol 3, Smooth muscle. Plenum Press, New York/London, pp 457–468Google Scholar

Assessment of Ganglion-Blocking Activity in the Isolated Bovine Retractor Penis Muscle

  1. Alaranta S, Klinge E, Pätsi T, Sjöstrand NO (1990) Inhibition of nicotine-induced relaxation of the bovine retractor penis muscle by compounds known to have ganglion-blocking activity. Br J Pharmacol 101:472–476PubMedCentralPubMedGoogle Scholar
  2. Birmingham AT, Hussain SZ (1980) A comparison of the skeletal neuromuscular and autonomic ganglion-blocking potencies of five non-depolarizing relaxants. Br J Pharmacol 70:501–506PubMedCentralPubMedGoogle Scholar
  3. Bowman WC, Webb SN (1972) Neuromuscular blocking and ganglion blocking activities of some acetylcholine antagonists in the cat. J Pharm Pharmacol 24:762–772Google Scholar
  4. Edge ND (1953) Mydriasis in the mouse: a quantitative method of estimating parasympathetic ganglion block. Br J Pharmacol Chemother 8:10–14Google Scholar
  5. Feldberg W (1951) Effects of ganglion-blocking substances on the small intestine. J Physiol Lond 113:483–505PubMedCentralPubMedGoogle Scholar
  6. Gillespie JS, Sheng H (1990) The effects of pyrogallol and hydroquinone on the response to NANC nerve stimulation in the rat anococcygeus and the bovine retractor penis muscles. Br J Pharmacol 99:194–196PubMedCentralPubMedGoogle Scholar
  7. Klinge E, Sjöstrand NO (1974) Contraction and relaxation of the retractor penis muscle and the penile artery in the bull. Acta Physiol Scand Suppl 420:5–88Google Scholar
  8. Klinge E, Sjöstrand NO (1977) Comparative study of some isolated mammalian smooth muscle effectors of penile erection. Acta Physiol Scand 100:354–365PubMedGoogle Scholar
  9. Klinge E, Potho P, Solatunturi E (1970) Adrenergic innervation and structure of the bull retractor penis muscle. Acta Physiol Scand 78:110–116PubMedGoogle Scholar
  10. Klinge E, Alaranta S, Sjöstrand NO (1988) Pharmacological analysis of nicotinic relaxation of bovine retractor penis muscle. J Pharmacol Exp Ther 245:280–286PubMedGoogle Scholar
  11. Klinge E, Alaranta S, Parkkisenniemi UM, Kostiainen E, Sjöstrand NO (1993) The use of the bovine retractor penis muscle for the assessment of ganglion-blocking activity of neuromuscular blocking and other drugs. J Pharmacol Toxicol Methods 30:197–202PubMedGoogle Scholar
  12. La M, Paisley K, Martin W, Rand MJ (1997) Effects of hydroxycobalamin on nitrergic transmission in rat anococcygeus and bovine retractor penis muscles: sensitivity to light. Eur J Pharmacol 321:R5–R6PubMedGoogle Scholar
  13. Parkkisenniemi UM, Klinge E (1996) Functional characterization of endothelin receptors in the bovine retractor penis muscle and penile artery. Pharmacol Toxicol 79:73–79PubMedGoogle Scholar
  14. Quilliam JP, Shand DG (1964) The selectivity of drugs blocking ganglion transmission in the rat. Br J Pharmacol 23:273–284Google Scholar

Angiotensin II Antagonism

  1. Aiyar N, Baker E, Vickery-Clark L, Ohlstein EH, Gellai M, Fredrickson TA, Brooks DP, Weinstock J, Weidley EF, Edwards RM (1995) Pharmacology of a potent long-acting imidazole-5-acrylic acid angiotensin AT1 receptor antagonist. Eur J Pharmacol 283:63–72PubMedGoogle Scholar
  2. Batt CM, Klein EW, Harding JW, Wright JW (1988) Pressor responses to amastatin, bestatin and Plummer’s inhibitors are suppressed by pretreatment with the angiotensin receptor antagonist Sarthran. Brain Res Bull 21:731–735PubMedGoogle Scholar
  3. Bohlender J, Ménard J, Wagner J, Luft FC, Ganten D (1996) Hypertension 27:535–540PubMedGoogle Scholar
  4. Brechler V, Jones PW, Levens NR, de Gasparo M, Bottari SP (1993) Agonistic and antagonistic properties of angiotensin analogs at the AT2 receptor in PC12W cells. Regul Pept 44:207–213PubMedGoogle Scholar
  5. Brooks DP, Fredrickson TA, Weinstock J, Ruffolo RR Jr, Edwards RM, Gellai M (1992) Antihypertensive activity of the nonpeptide angiotensin II receptor antagonist, SK&F 108566, in rats and dogs. Naunyn Schmiedeberg’s Arch Pharmacol 345:673–678Google Scholar
  6. Brooks DP, Contino LC, Short BG, Gowan C, Trizna W, Edwards RM (1995) SB 203220: a novel angiotensin II receptor antagonist and renoprotective agent. J Pharmacol Exp Ther 274:1222–1227PubMedGoogle Scholar
  7. Caussade F, Virone-Oddos A, Delchambre C, Cazes M, Versigny A, Cloarec A (1995) In vitro pharmacological characterization of UP 269–6, a novel nonpeptide angiotensin II receptor antagonist. Fundam Clin Pharmacol 9:119–128PubMedGoogle Scholar
  8. Cazaubon C, Gougat J, Bousquet F, Guiraudou P, Gayraud R, Lacour C, Roccon A, Galindo G, Barthelmy G, Gautret B, Bernhart C, Perreaut P, Breliere JC, le Fur G, Nisato D (1993) Pharmacological characterization of SR 47436, a new non-peptide AT1 subtype angiotensin II receptor antagonist. J Pharmacol Exp Ther 265:826–834PubMedGoogle Scholar
  9. Chang RSL, Lotti VJ, Chen TB, O’Malley SS, Bedensky RJ, Kling PJ, Kivlighn SD, Siegl PKS, Ondeyka D, Greenlee WJ, Mantlo NB (1995) In vitro pharmacology of an angiotensin AT1 receptor antagonist with balanced affinity for AT2 receptors. Eur J Pharmacol 294:429–437PubMedGoogle Scholar
  10. Chiu AT, Duncia JV, McCall DE, Wong PC, Price WA, Thoolen MJMC, Carini DJ, Johnson AL, Timmermans PBMWM (1989) Nonpeptide angiotensin II receptor antagonists. III. Structure-function studies. J Pharmacol Exp Ther 250:867–874PubMedGoogle Scholar
  11. Chui AT, McCall DE, Price WA, Wong PC, Carini DJ, Duncia JV, Wexler RR, Yoo SE, Johnson AL, Timmermans PBMWM (1990) Nonpeptide angiotensin II receptor antagonists: cellular and biochemical pharmacology of DuP 753, an orally active antihypertensive agent. J Pharmacol Exp Ther 252:711–718Google Scholar
  12. Criscione L, de Gasparo M, Bühlmayer P, Whitebread S, Ramjoué HPR, Wood J (1993) Pharmacological profile of valsartan: a potent, orally active, nonpeptide antagonist of angiotensin II AT1-receptor subtype. Br J Pharmacol 110:761–771PubMedCentralPubMedGoogle Scholar
  13. Deprez P, Guillaume J, Becker R, Corbier A, Didierlaurent S, Fortin M, Frechet D, Hamon G, Heckmann B, Heitsch H, Kleemann HW, Vevert JP, Vincent JC, Wagner A, Zhang J (1995) Sulfonylureas and sulfonylcarbamates as new non-tetrazole angiotensin II receptor antagonists. Discovery of the highly potent orally active (imidazolylbiphenyl) sulfonylurea (HR 720). J Med Chem 38:2357–2377PubMedGoogle Scholar
  14. Gabel RA, Kivlighn SD, Zingaro GJ, Schorn TW, Schaffer LW, Ashton WT, Chang LL, Flanagan K, Greenlee WJ, Siegl PKS (1995) In vivo pharmacology of L-159,913, a new highly potent and selective nonpeptide angiotensin II receptor antagonist. Clin Exp Hypertens 17:931–953PubMedGoogle Scholar
  15. Hilditch A, Hunt AAE, Travers A, Polley J, Drew GM, Middle-miss D, Judd DB, Ross BC, Robertson MJ (1995) Pharmacological effects of GR138950, a novel angiotensin AT1 receptor antagonist. J Pharmacol Exp Ther 272:750–757PubMedGoogle Scholar
  16. Junggren IL, Zhao X, Sun X, Hedner T (1996) Comparative cardiovascular effects of the angiotensin II type 1 receptor antagonists ZD 7155 and losartan in the rat. J Pharm Pharmacol 48:829–833PubMedGoogle Scholar
  17. Keiser JA, Major TC, Lu GH, Davis LS, Panek RL (1993) Is there a functional cardiovascular role for the AT2 receptors? Drug Dev Res 29:94–99Google Scholar
  18. Keiser JA, Ryan MJ, Panek RL, Hedges JC, Sircar I (1995) Pharmacologic characterization of CI-996, a new angiotensin receptor antagonist. J Pharmacol Exp Ther 272:963–969PubMedGoogle Scholar
  19. Khairallah PA, Page IH (1961) Mechanism of action of angiotensin and bradykinin on smooth muscle in situ. Am J Physiol 200:51–54Google Scholar
  20. Kim S, Sada T, Mizuno M, Ikeda M, Yano M, Miura K, Yamanaka S, Koike H, Iwao H (1997) Effects of angiotensin AT1 receptor antagonist on volume overload-induced cardiac gene expression in rats. Hypertens Res 20:133–142PubMedGoogle Scholar
  21. Kivlighn SD, Huckle WR, Zingaro GJ, Rivero RA, Lotti VJ, Chang RSL, Schorn TW, Kevin N, Johnson RG Jr, Greenlee WJ, Siegl PKS (1995a) Discovery of L-162,313: a nonpeptide that mimics the biological actions of angiotensin II. Am J Physiol 268(Regul Integr Comp Physiol 37):R820–R823PubMedGoogle Scholar
  22. Kivlighn SD, Zingaro GJ, Gabel RA, Broten TB, Schorn TW, Schaffer LW, Naylor EM, Chakravarty PK, Patchett AA, Greenlee WJ, Siegl PKS (1995b) In vivo pharmacology of a novel AT1 selective angiotensin II receptor antagonist, MK-996. Am J Hypertens 8:58–66PubMedGoogle Scholar
  23. Kivlighn SD, Zingaro GJ, Gabel RA, Broten TB, Chang RSL, Ondeyka DL, Mantlo NB, Gibson RE, Greenlee WJ, Siegl PKS (1995c) In vivo pharmacology of an angiotensin AT1 receptor antagonist with balanced affinity for angiotensin AT2 receptors. Eur J Pharmacol 294:439–450PubMedGoogle Scholar
  24. Kushida H, Nomura S, Morita O, Harasawa Y, Suzuki M, Nakano M, Ozawa K, Kunihara M (1995) Pharmacological characterization of the nonpeptide angiotensin II receptor antagonist, U-97018. J Pharmacol Exp Ther 274:1042–1053PubMedGoogle Scholar
  25. Lacour C, Roccon A, Cazaubon C, Segondy D, Nisato D (1993) Pharmacological study of SR 47436, a non-peptide angiotensin II AT1-receptor antagonist, in conscious monkeys. J Hypertens 11:1187–1194Google Scholar
  26. Ledingham JM, Laverty R (1996) Remodelling of resistance arteries in genetically hypertensive rats by treatment with valsartan, an angiotensin II receptor antagonist. Clin Exp Pharmacol Physiol 23:576–578PubMedGoogle Scholar
  27. Linz W, Heitsch H, Schölkens BA, Wiemer G (2000) Long term angiotensin II type 1 receptor blockade with fonsartan doubles lifespan of hypertensive rats. Hypertension 35:908–913PubMedGoogle Scholar
  28. Mizuno M, Sada T, Ikeda M, Fukuda N, Miyamoto M, Yanagisawa H, Koike H (1995) Pharmacology of CS-866, a novel nonpeptide angiotensin II receptor antagonist. Eur J Pharmacol 285:181–188PubMedGoogle Scholar
  29. Müller D, Hilgers K, Bohlender J, Lippoldt A, Wagner J, Fischli W, Ganten D, Mann JFE, Luft FC (1995) Effects of human renin in the vasculature of rats transgenic for human angiotensinogen. Hypertension 26:272–278PubMedGoogle Scholar
  30. Nagura J, Yasuda S, Fujishima K, Yamamoto M, Chui C, Kawano KI, Katano K, Ogino H, Hachisu M, Konno F (1995) Pharmacological profile of ME3221, a novel angiotensin II receptor antagonist. Eur J Pharmacol 274:210–221Google Scholar
  31. Nozawa Y, Haruno A, Oda N, Yamasaki Y, Matsuura N, Miyake H, Yamada S, Kimura R (1997) Pharmacological profile of TH-142177, a novel orally active AT1-receptor antagonist. Fundam Clin Pharmacol 11:395–401PubMedGoogle Scholar
  32. Olins GM, Corpus VM, Chen ST, McMahon EG, Paloma MA, McGraw DE, Smits GJ, Null CL, Brown MA, Bittner SE, Koepke JB, Blehm DJ, Schuh JR, Baierl CS, Schmidt RE, Cook CS, Reitz DB, Penick MA, Manning RE, Blaine EH (1993) Pharmacology of SC-52458, an orally active, non-peptide angiotensin AT1 receptor antagonist. J Cardiovasc Pharmacol 22:617–625PubMedGoogle Scholar
  33. Renzetti AR, Cucchi P, Guelfi M, Cirillo R, Salimbeni A, Subissi A, Giachetti A (1995) Pharmacology of LR-B/057, a novel active AT1 receptor antagonist. J Cardiovasc Pharmacol 25:354–360PubMedGoogle Scholar
  34. Rhaleb NE, Rouissi N, Nantel F, D’Orléans-Juste P, Regoli D (1991) DuP 753 is a specific antagonist for the angiotensin receptor. J Hypertens 17:480–484Google Scholar
  35. Siegl PKS (1993) Discovery of losartan, the first specific nonpeptide angiotensin II receptor antagonist. J Hypertens 11(Suppl 3):S19–S22Google Scholar
  36. Shibasaki M, Fujimori A, Kusayama T, Tokioka T, Satoh Y, Okazaki T, Uchida W, Inagaki O, Yangisawa I (1997) Antihypertensive activity of a nonpeptide angiotensin II receptor antagonist, YM358, in rats and dogs. Eur J Pharmacol 335:175–184PubMedGoogle Scholar
  37. Smits GJ, Koepke JP, Blaine EH (1991) Reversal of low dose angiotensin hypertension by angiotensin receptor antagonists. Hypertension 18:17–21PubMedGoogle Scholar
  38. Trachte GJ, Ferrario CM, Khosla MC (1990) Selective blockade of angiotensin responses in the rabbit isolated vas deferens by angiotensin receptor antagonists. J Pharmacol Exp Ther 255:929–934PubMedGoogle Scholar
  39. Vogel HG, Jung W, Schoelkens BA (1976) Hypotensive action of central injection of angiotensin II antagonist in conscious rats with experimental hypertension. Abstract no 286, p 117, V. Intern Congr Endocin, HamburgGoogle Scholar
  40. Wagner J, Thiele F, Ganten D (1996) The renin-angiotensin system in transgenic rats. Pediatr Nephrol 10:108–112PubMedGoogle Scholar
  41. Wahhab A, Smith JR, Ganter RC, Moore DM, Hondrelis J, Matsoukas J, Moore GJ (1993) Imidazole based non-peptide angiotensin II receptor antagonists. Investigation of the effects of the orientation of the imidazole ring on biological activity. Arzneim Forsch/Drug Res 43:1157–1168Google Scholar
  42. Wienen W, Hauel N, van Meel JCA, Narr B, Ries U, Entzeroth M (1993) Pharmacological characterization of the novel non-peptide angiotensin II receptor antagonist, BIBR 277. Br J Pharmacol 110:245–252PubMedCentralPubMedGoogle Scholar
  43. Wong PC, Price WA Jr, Chiu AT, Thoolen MJMC, Duncia JV, Johnson AL, Timmermans PBMWM (1989) Nonpeptide angiotensin II receptor antagonists. IV. EXP6155 and EXP6803. Hypertension 13:489–497PubMedGoogle Scholar
  44. Wong PC, Hart SH, Zaspel AM, Chiu AT, Ardecky RJ, Smith RD, Timmermans PBMWM (1990) Functional studies on nonpeptide angiotensin II receptor subtype-specific ligands: DuP 753 (A ll-1) and PD 123177 (A ll-2). J Pharmacol Exp Ther 255:584–592PubMedGoogle Scholar
  45. Wong PC, Hart SD, Chiu AT, Herblin WF, Carini DJ, Smith RD, Wexler RR, Timmermans PBMWM (1991a) Pharmacology of DuP 5323, a selective and noncompetitive AT1 receptor antagonist. J Pharmacol Exp Ther 259:861–870PubMedGoogle Scholar
  46. Wong PC, Price WA, Chiu AT, Duncia JV, Carini DJ, Wexler RR, Johnson AL, Timmermans PBMWM (1991b) In vivo pharmacology of DuP 753. Am J Hypertens 4:288S–298SPubMedGoogle Scholar
  47. Wong PC, Quan ML, Saye JAM, Bernard R, Crain EJ Jr, Nc-Call DE, Watson CA, Zaspel AM, Smith RD, Wexler RR, Timmermans PBMWM, Chiu AT (1995) Pharmacology of XR510, a potent orally active nonpeptide angiotensin II AT1 receptor antagonist with high affinity to the AT2 receptor subtype. J Cardiovasc Pharmacol 26:354–362PubMedGoogle Scholar

ACE Inhibition Measured in Vivo in the Rat

  1. Becker RHA, Schölkens BA, Metzger M, Schulze KJ (1984) Pharmacological activities of the new orally active angiotensin converting enzyme inhibitor 2-[N-[(S)-1-ethoxycarbonyl-3-phenylpropyl-l-alanyl]-(1S,3S,5S)-2-azabicyclo[3.3.0]octane-3-carboxylic acid (Hoe 498). Arzneim Forsch/Drug Res 34:1411–1416Google Scholar
  2. Linz W, Wiemer G, Schmidts HL, Ulmer W, Ruppert D, Schölkens BA (1996) ACE inhibition decreases postoperative mortality in rats with left ventricular hypertrophy and myocardial infarction. Clin Exp Hypertens 18:691–712PubMedGoogle Scholar
  3. Linz W, Jessen T, Becker RHA, Schölkens BA, Wiemer G (1997) Long-term ACE inhibition doubles lifespan of hypertensive rats. Circulation 96:3164–3172PubMedGoogle Scholar
  4. Linz W, Wohlfart P, Schoelkens BA, Becker RHA, Malinski T, Wiemer G (1999) Late treatment with ramipril increases survival in old spontaneously hypertensive rats. Hypertension 34:291–295PubMedGoogle Scholar
  5. Natoff IL, Brewster M, Patel AT (1981) Method for measuring the duration of inhibition of angiotensin I-converting enzyme in vivo. J Pharmacol Methods 5:305–312PubMedGoogle Scholar
  6. Panzenbeck M, Loughnan CL, Madwed JB, Winquist RJ, Fogal SE (1995) Captopril-induced hypotension is inhibited by the bradykinin blocker HOE 140 in Na+ depleted marmosets. Am J Physiol 269(4 Pt 2):H1221–H1228PubMedGoogle Scholar
  7. Pettinger W, Sheppard H, Palkoski Z, Renyi E (1973) Angiotensin antagonism and antihypertensive activity of phosphodiesterase inhibiting agents. Life Sci 12:49–62Google Scholar
  8. Rubin B, Laffan RJ, Kotler DG, O’Keefe EH, Demaio DA, Goldberg ME (1978) SQ 14,225 (d-3-mercapto-2-methylpropanoyl-l-proline), a novel orally active inhibitor of angiotensin I-converting enzyme. J Pharmacol Exp Ther 204:271–280PubMedGoogle Scholar

Evaluation of Renin Inhibitors in Dogs

  1. Nussberger J, Brunner DB, Waeber B, Brunner HR (1985) True versus immunoreactive angiotensin II in human plasma. Hypertension 7(Suppl I):I1–I17PubMedGoogle Scholar
  2. Nussberger J, D’Amore TF, Porchet M, Waeber B, Brunner DB, Brunner HR, Kler L, Brown AN, Francis RJ (1987) Repeated administration of the converting enzyme inhibitor Cilazapril to normal volunteers. J Cardiovasc Pharmacol 9(D’Amore TF):39–44PubMedGoogle Scholar
  3. Palmer RK, Rapundalo ST, Batley BL, Barnes AE, Singh S, Ryan MJ, Taylor DG (1993) Disparity between blood pressure and PRA inhibition after administration of a renin inhibitor to anesthetized dogs: methodological considerations. Clin Exp Hypertens 15:663–681PubMedGoogle Scholar
  4. Pals DT, Lawson JA, Couch SJ (1990) Rat model for evaluating inhibitors of human renin. J Pharmacol Methods 23:230–245Google Scholar
  5. Poulsen K, Jørgensen J (1973) An easy radioimmunological assay of renin activity, concentration and substrate in human and animal plasma and tissue based on angiotensin I trapping by antibody. J Clin Endocrinol Metab 39:816–825Google Scholar
  6. Sealey JE, Laragh JH (1975) Radioimmunoassay of plasma renin activity. Semin Nucl Med 5:189–202PubMedGoogle Scholar

Evaluation of Renin Inhibitors in Monkeys

  1. Evans DB, Cornette JC, Sawyer TK, Staples DJ, de Vaux AE, Sharma SK (1990) Substrate specificity and inhibitor structure-activity relationships of recombinant human renin: implications in the in vivo evaluation of renin inhibitors. Biotechnol Appl Biochem 12:161–175PubMedGoogle Scholar
  2. Fischli W, Clozel JP, Amrami KE, Wostl W, Neidhart W, Stadler H, Branca Q (1991) RO 42–5892 is a potent orally active renin inhibitor in primates. Hypertension 18:22–31PubMedGoogle Scholar
  3. Greenlee WJ (1990) Renin inhibitors. Med Res Rev 10:173–236PubMedGoogle Scholar
  4. Hiwada K, Kobuko T, Murakami E, Muneta S, Morisawa Y, Yabe Y, Koike H, Iijima Y (1988) A highly potent and long-acting oral inhibitor of human renin. Hypertension 11:707–712Google Scholar
  5. Linz W, Heitsch H, Henning R, Jung W, Kleemann HW, Nickel WU, Ruppert D, Urbach H, Wagner A, Schölkens BA (1994) Effects of the renin inhibitor N-[N-(3-(4-amino-1-piperidinylcarbonyl)-2(R)-benzylpropionyl)-l-histidinyl]-(2S,3R,4S)-1-cyclohexyl-3,4-dihydroxy-6(2-pyridyl)-hexane-2-amide acetate (S 2864) in anesthetized rhesus monkeys. Arzneim Forsch/Drug Res 44:815–820Google Scholar
  6. Wood JM, Gulati N, Forgiarini P, Fuhrer W, Hofbauer KG (1985) Effects of a specific and long-acting renin inhibitor in the marmoset. Hypertension 7:797–803PubMedGoogle Scholar
  7. Wood JM, Baum HP, Forgiarini P, Gulati N, Jobber RA, Neisius D, Hofbauer KG (1989a) Haemodynamic effects of acute and chronic renin inhibition in marmosets. J Hypertens 7(Suppl 2):S37–S42Google Scholar
  8. Wood JM, Criscione L, de Gasparo M, Bühlmayer P, Rüeger H, Stanton JL, Jupp RA, Kay J (1989b) CGP 38 560: orally active, low-molecular-weight renin inhibitor with high potency and specificity. J Cardiovasc Pharmacol 14:221–226PubMedGoogle Scholar
  9. Wood JM, Schnell CR, Cumin F, Menard J, Webb RL (2005) Aliskiren, a novel, orally effective renin inhibitor, lowers blood pressure in marmosets and spontaneously hypertensive rats. J Hypertens 23:417–426PubMedGoogle Scholar

Penile Erection in Rabbits

  1. Bischoff E (2001) Rabbits as models for impotence research. Int J Impot Res 13:146–148PubMedGoogle Scholar
  2. Bischoff E, Schneider K (2000) A conscious rabbit model is able to demonstrate the efficacy of verdenafil and sildenafil on penile erection. Int J Impot Res 12:65Google Scholar
  3. Bischoff E, Schneider K (2001) A conscious-rabbit model to study verdenafil hydrochloride and other agents that induce penile erection. Int J Impot Res 13:230–235PubMedGoogle Scholar
  4. Bischoff E, Niewoehner U, Haning H, Es Sayed M, Schenke T, Schlemmer KH (2001) The oral efficacy of verdenafil hydrochloride for inducing penile erection in a conscious rabbit model. J Urol 165:1316–1318PubMedGoogle Scholar
  5. Carter AJ, Ballard SA, Naylor AM (1998) Effect of the selective phosphodiesterase type 5 inhibitor sildenafil on erectile dysfunction in the anaesthetized dog. J Urol 160:242–246PubMedGoogle Scholar
  6. Choi S, O’Connell L, Min K, Kim NN, Munarriz R, Goldstein I, Bischoff E, Traisch AM (2002) Efficacy of verdenafil and sildenafil in facilitating penile erection in an animal model. J Androl 23:332–337PubMedGoogle Scholar
  7. Klotz T, Sachse R, Heidrich A, Jockenhövel F, Rhode G, Wensing G, Horstmann R, Engelmann R (2001) Verdenafil increases penile rigidity and tumescence in erectile dysfunction patients: a RigiScan and pharmacokinetic study. World J Urol 19:32–39PubMedGoogle Scholar
  8. Lin YM, Lin JS (1996) The rabbit as an intracavernous injection study model. Urol Res 24:27–32PubMedGoogle Scholar
  9. Min K, Kim NN, McAuley I, Stankowicz M, Goldstein I, Traisch AM (2000) Sildenafil augments pelvic nerve-mediated female sexual arousal in the anesthetized rabbit. Int J Impot Res 12(Suppl 3):S32–S39PubMedGoogle Scholar
  10. Naganuma H, Egashira T, Fujii I (1993) Neuroleptics induce penile erection in the rabbit. Clin Exp Pharmacol Physiol 20:177–183PubMedGoogle Scholar
  11. Porst H, Rosen R, Padma-Nathan H, Goldstein I, Giuliano F, Ulbrich E, Bandel T (2001) The efficacy and tolerability of vardenafil, a new, oral, selective phosphodiesterase type 5 inhibitor, in patients with erectile dysfunction: the first at-home clinical trial. Int J Impot Res 13(4):192–199PubMedGoogle Scholar
  12. Saenz de Tejada I, Angulo J, Cuevas P, Fernández A, Moncada I, Allona A, Lledó E, Körschen HG, Niewöhner U, Haning H, Pages E, Bischoff E (2001) The phosphodiesterase inhibitory selectivity and the in vitro and in vivo potency of the new PDE5 inhibitor verdenafil. Int J Impot Res 13:282–290PubMedGoogle Scholar
  13. Sjöstrand NO, Klinge E (1979) Principal mechanisms controlling penile retraction and protrusion in rabbits. Acta Physiol Scand 106:199–214PubMedGoogle Scholar
  14. Thielen P, Renders M, Rectem D (1969) Medullary regions controlling the erection and retraction of the penis in rabbits. Arch Int Physiol Biochim 77:340–342PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Michael Gralinski
    • 1
  • Liomar A. A. Neves
    • 1
  • Olga Tiniakova
    • 1
  1. 1.CorDynamics, Inc.ChicagoUSA

Personalised recommendations