Effects on Tracheal Cells and Bronchial Mucus Secretion

  • Kristy D. BruseEmail author
Reference work entry


Mucus secretion has been studied in isolated tracheas from ferrets and dogs (Borson et al. 1980; Kyle et al. 1987).


Alveolar Macrophage Mucus Secretion Ciliary Beat Frequency Tracheal Epithelial Cell Ciliary Activity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

In Vitro Studies of Mucus Secretion

  1. Borson DB, Chinn RA, Davis B, Nadel JA (1980) Adrenergic and cholinergic nerves mediate fluid secretion from tracheal glands of ferrets. J Appl Physiol Respir Environ Exerc Physiol 49:1027–1031PubMedGoogle Scholar
  2. Kyle H, Robinson NP, Widdicombe JG (1987) Mucus secretion by tracheas of ferret and dog. Eur J Respir Dis 70:14–22PubMedGoogle Scholar
  3. Quinton PM (1979) Composition and control of secretions from tracheal bronchial submucosal glands. Nature 279:551–552CrossRefPubMedGoogle Scholar
  4. Robinson N, Widdicombe JG, Xie CC (1983a) In vitro collection of mucus from the ferret trachea. J Phys 340:7P–8PGoogle Scholar
  5. Robinson N, Widdicombe JG, Xie CC (1983b) In vitro measurement of submucosal gland secretion in the ferret trachea by observation of tantalum dust-coated “hillocks”. J Phys 340:8PGoogle Scholar
  6. Widdicombe JG (1988a) Methods for collecting and measuring mucus from specific sources. In: Braga PC, Allegra L (eds) Methods in bronchial mucology. Raven, New York, pp 21–29Google Scholar

Acute Studies of Mucus Secretion

  1. Braga PC (1988) Methods for collecting and measuring airway mucus in animals. In: Braga PC, Allegra L (eds) Methods in bronchial mucology. Raven Press, New York, pp 3–11Google Scholar
  2. Davis B, Chinn R, Gold J, Popovac D, Widdicombe JG, Nadel JA (1982) Hypoxemia reflexly increases secretion from tracheal submucosal glands in dogs. J Appl Physiol Resp Environ Exerc Physiol 52:1416–1419Google Scholar
  3. Engler H, Szelenyi I (1984) Tracheal phenol red secretion, a new method for screening mucosecretolytic compounds. J Pharmacol Methods 11:151–157CrossRefPubMedGoogle Scholar
  4. Gallagher JT, Kent PW, Passatore M, Phipps RJ, Richardson PS (1975) The composition of tracheal mucus and the nervous control of its secretion in the cat. Proc R Soc Lond 192:49–76CrossRefPubMedGoogle Scholar
  5. Graziani G, Cazzulani P (1981) Su un metodo particolarmente indicato per lo studio dell’attivita espettorante nei piccoli animali. Farmaco/Ed Pr 36:167–172Google Scholar
  6. Johnson HG, McNee ML (1983) Secretagogue responses of leukotriene C4, D 4: comparison of potency in canine trachea in vivo. Prostaglandins 25:237–243CrossRefPubMedGoogle Scholar
  7. Johnson HG, McNee ML (1985) Adenosine-induced secretion in the canine trachea: modification by methylxanthines and adenosine derivatives. Br J Pharmacol 86:63–67PubMedCentralCrossRefPubMedGoogle Scholar
  8. Leikauf GD, Ueki IF, Nadel JA (1984) Autonomic regulation of viscoelasticity of cat tracheal gland secretions. J Appl Physiol Respir Environ Exerc Physiol 56:426–430PubMedGoogle Scholar
  9. Perry WF, Boyd EM (1941) A method for studying expectorant action in animals by direct measurement of the output of respiratory tract fluids. J Pharmacol Exp Ther 73:65–77Google Scholar
  10. Proctor DF, Aharonson EF, Reasor MJ, Bucklen KR (1973) A method for collecting normal respiratory mucus. Bull Physiopathol Respir 9:351–358Google Scholar
  11. Quevauviller A, Ngoc-Huyen V (1966) Hypersecretion expérimentale du mucus bronchique chez le rat. I. Methode de appreciation anatomopathologique. C R Soc Biol 160:1845–1849Google Scholar
  12. Ueki I, German V, Nadel J (1980a) Direct measurement of tracheal mucus gland secretion with micropipettes in cats. Effects of cholinergic and α-adrenergic stimulation. Clin Res 27:59AGoogle Scholar
  13. Ueki I, German VF, Nadel JA (1980b) Micropipette measurement of airway submucosal gland secretion. Autonomic effects. Am Rev Respir Dis 121:351–357PubMedGoogle Scholar

Studies of Mucus Secretion With Chronic Cannulation

  1. Barber WH, Smal PA Jr (1974) Construction of an improved tracheal pouch in the ferret. Am Rev Respir Dis 115:165–169Google Scholar
  2. Braga PC (1988) Dynamic methods in viscoelasticity assessment. Sinusoidal oscillation method. In: Braga PC, Allegra L (eds) Methods in bronchial mucology. Raven Press, New York, pp 63–71Google Scholar
  3. Kim CS, Berkley BB, Abraham WM, Wanner A (1982) A micro double capillary method for rheological measurements of lower airway secretions. Bull Eur Physiopathol Respir 18:915–927PubMedGoogle Scholar
  4. King M (1988) Magnetic microrheometer. In: Braga PC, Allegra L (eds) Methods in bronchial mucology. Raven, New York, pp 73–83Google Scholar
  5. Lopez-Vidriero MT, Das I, Reid LM (1977) Airway secretion: source, biochemical and rheological properties. In: Brain JD, Proctor DF, Reid LM (eds) Respiratory defense mechanisms. Part I. Marcel Dekker, New York, pp 289–356Google Scholar
  6. Majima Y, Hirata K, Takeuchi K, Hattori K, Sakakura Y (1990) Effects of orally administered drugs on dynamic viscoelasticity of human nasal mucus. Am Rev Respir Dis 141:79–83CrossRefPubMedGoogle Scholar
  7. Martin R, Litt M, Marriott C (1980) The effect of mucolytic agents on the rheological and transport properties of canine tracheal mucus. Am Rev Respir Dis 121:495–500CrossRefPubMedGoogle Scholar
  8. Philippoff W, Han CD, Barnett B, Dulfano MJ (1970) A method for determining the viscoelastic properties of biological fluids. Biorheology 7:55–67PubMedGoogle Scholar
  9. Scuri R, Frova C, Fantini PL, Mondani G, Riboni R, Alfieri C (1980) Un nuovo metodo per lo studio della mucoproduzione nel coniglio. Boll Chim Farm 119:181–187PubMedGoogle Scholar
  10. Wardell JR Jr, Chakrin LW, Payne BJ (1970) The canine tracheal pouch. A model for use in respiratory mucus research. Am Rev Respir Dis 101:741–754PubMedGoogle Scholar
  11. Widdicombe JG (1988b) Methods for collecting and measuring mucus from specific sources. In: Braga PC, Allegra L (eds) Methods in bronchial mucology. Raven, New York, pp 21–29Google Scholar
  12. Yankell SL, Marshall R, Kavanagh B, DePalma PD, Resnick B (1970) Tracheal fistula in dogs. J Appl Physiol 28:853–854PubMedGoogle Scholar

Bronchoalveolar Lavage

  1. Bassett DJP, Bowen Kelly E, Brewster EL, Elbon CL, Reichenbaugh SS, Bunton T, Kerr JS (1988) A reversible model of acute lung injury based on ozone exposure. Lung 166:355–369CrossRefPubMedGoogle Scholar
  2. Fryer AD, Yarkony KA, Jacoby DB (1994) The effect of leukocyte depletion on pulmonary M2 muscarinic receptor function in parainfluenza virus-infected guinea pigs. Br J Pharmacol 112:588–594PubMedCentralCrossRefPubMedGoogle Scholar
  3. Fryer AD, Costello RW, Yost BL, Lobb RR, Tedder TF, Steeber DA (1997) Antibody to VLA-4, but not to L-selectin, protects neuronal M2 muscarinic receptors in antigen-challenged guinea pig airways. J Clin Invest 99:2036–2044PubMedCentralCrossRefPubMedGoogle Scholar
  4. Gossart S, Cambon C, Orfila C, Séguélas MH, Lepert JC, Rami J, Carré P, Pipy B (1996) Reactive oxygen intermediates as regulators of TNF-α production in rat lung induced by silica. J Immunol 156:1540–1548PubMedGoogle Scholar
  5. Myrvik QN, Leake ES, Fariss B (1961) Studies on pulmonary alveolar macrophages from the normal rabbit: a technique to produce them in a high state of purity. J Immunol 86:128–132PubMedGoogle Scholar
  6. Wang S, Lantz RC, Rider RD, Chen GJ, Breceda V, Hays AM, Robledo RF, Tollinger BJ, Dinesh SVR, Witten ML (1996) A free radical scavenger (Lazaroid U75412E) attenuates tumor necrosis factor-alpha generation in a rabbit smoke-induced lung injury. Respiration 64:358–363CrossRefGoogle Scholar

Ciliary Activity

  1. Baldetorp L, Huberman D, Håkanssson CH, Toremalm NG (1976) Effects of ionizing radiation on the activity of the ciliated epithelium of the trachea. Acta Radiol Ther Phys Biol 13:225–232CrossRefGoogle Scholar
  2. Braga PC, Dall’Oglio G, Bossi R, Allegra L (1986) Simple and precise method for counting ciliary beats directly from the TV monitor screen. J Pharmacol Methods 16:161–169CrossRefPubMedGoogle Scholar
  3. Cheung ATW (1976) High speed cinemicrographic studies on rabbit tracheal (ciliated) epithelia: determination of the beat pattern of tracheal cilia. Pediatr Res 10:140–144CrossRefPubMedGoogle Scholar
  4. Corssen G, Allen CR (1958) A comparison of the toxic effects of various local anesthetic drugs on human ciliated epithelium in vitro. Tex Rep Biol Med 16:194–202PubMedGoogle Scholar
  5. Curtis LN, Carson JL (1992) Computer-assisted video measurement of inhibition of ciliary beat frequency of human nasal epithelium in vitro by xylometazoline. J Pharmacol Toxicol Methods 28:1–7CrossRefPubMedGoogle Scholar
  6. Dalhamn T (1956) Mucous flow and ciliary activity in the trachea of healthy rats and rats exposed to respiratory irritant gases (SO2, H3N, HCHO). A functional and morphologic (light microscopic and electron microscopic) study, with special reference to technique. Acta Physiol Scand 36(Suppl 123):1–161Google Scholar
  7. Dalhamn T (1964) Studies on tracheal ciliary activity. Am Rev Respir Dis 89:870–877PubMedGoogle Scholar
  8. Dalhamn T, Rylander R (1962) Frequency of ciliary beat measured with a photo-sensitive cell. Nature 196:592–593CrossRefPubMedGoogle Scholar
  9. Hakansson CH, Toremalm NG (1963) Studies on the physiology of the trachea. I. Ciliary activity indirectly recorded by a new “light beam reflex” method. Ann Otol 74:954–969Google Scholar
  10. Hesse H, Kasparek R, Mizera W, Unterholzner C, Konietzko N (1981) Influence of reproterol on ciliary beat frequency of human bronchial epithelium in vitro. Arzneim Forsch/Drug Res 31:716–718Google Scholar
  11. Hybbinette JC, Mercke U (1982a) A method for evaluating the effect of pharmacological substances on mucociliary activity in vivo. Acta Otolaryngol 93:151–159CrossRefPubMedGoogle Scholar
  12. Hybbinette JC, Mercke U (1982b) Effects of the parasympathomimetic drug methacholine and its antagonist atropine on mucociliary activity. Acta Otolaryngol 93:465–473CrossRefPubMedGoogle Scholar
  13. Hybbinette JC, Mercke U (1982c) Effects of sympathomimetic agonists and antagonists on mucociliary activity. Acta Otolaryngol 94:121–130CrossRefPubMedGoogle Scholar
  14. Iravani J (1967) Flimmerbewegung in den intrapulmonalen Luftwegen der Ratte. Pflugers Arch 207:221–237CrossRefGoogle Scholar
  15. Iravani J (1971) Physiologie und Pathophysiologie der Cilientätigkeit und des Schleimtransports im Tracheobronchialbaum. (Untersuchungen an Ratten). Pneumonologie 144:93–112CrossRefPubMedGoogle Scholar
  16. Iravani J, Melville GN (1975) Mucociliary activity in the respiratory tract as influenced by prostaglandin E1. Respiration 32:305–315CrossRefPubMedGoogle Scholar
  17. Lee WI, Verdugo P (1976) Laser light-scattering spectroscopy. A new application in the study of ciliary activity. Biophys J 16:1115–1119PubMedCentralCrossRefPubMedGoogle Scholar
  18. Lierle DM, Moore PM (1935) Further study of the effects of drugs on ciliary activity: a new method of observation in the living animal. Ann Otol 44:671–684Google Scholar
  19. Lindberg S, Mercke U (1986) Bradykinin accelerates mucociliary activity in rabbit maxillary sinus. Acta Otolaryngol (Stockh) 101:114–121CrossRefGoogle Scholar
  20. Lindberg S, Hybbinette JC, Mercke U (1986) Effects of neuropeptides on mucociliary activity. Ann Otol Rhinol Laryngol 95:94–100CrossRefPubMedGoogle Scholar
  21. Lopez-Vidriero MT, Jacobs M, Clarke SW (1985) The effect of isoprenaline on the ciliary activity of an in vitro preparation of rat trachea. Eur J Pharmacol 112:429–432CrossRefPubMedGoogle Scholar
  22. Manawadu BR, Mostow SR, LaForce FM (1978) Local anesthetics and tracheal ring ciliary activity. Anesth Anal 57:448–452CrossRefGoogle Scholar
  23. Maurer DR, Sielczak M, Oliver W Jr, Abraham WM, Wanner A (1982) Role of ciliary motility in acute allergic mucociliary dysfunction. J Appl Physiol 52:1018–1023PubMedGoogle Scholar
  24. Mercke U, Håkanson CH, Toremalm NG (1974) A method for standardized studies of mucociliary activity. Acta Otolaryngol 78:118–123CrossRefPubMedGoogle Scholar
  25. Mercke U, Lindbergh S, Dolata J (1987) The role of neurokinin A and calcitonin-related peptide in the mucociliary defense of the rabbit maxillary sinus. Rhinology 25:89–93PubMedGoogle Scholar
  26. Rutland J, Cole PJ (1980) Non-invasive sampling of nasal cilia for measurement of beat frequency and study of ultrastructure. Lancet ii:564–565CrossRefGoogle Scholar
  27. Suzuki N (1966) Motor control of the ciliary activity in the frog’s palate. J Fac Sci, Hokkaido Univ Ser VI 16:67–71Google Scholar
  28. Van de Donk HJM, Muller-Platema IP, Zuidema J, Merkus FWHM (1980) The effects of preservatives on the ciliary beat frequency of chicken embryo tracheas. Rhinology 18:119–133PubMedGoogle Scholar
  29. Verdugo P, Johnson NT, Tam PY (1980) β-adrenergic stimulation of respiratory ciliary activity. J Appl Physiol 48:868–871PubMedGoogle Scholar

Studies of Mucociliary Transport

  1. Ahmed T, Januskiewicz AJ, Landa JF, Brown A, Chapman GA, Kenny PJ, Finn RD, Bondick J, Sackner MA (1979) Effect of local radioactivity on tracheal mucous velocity of sheep. Am Rev Respir Dis 120:567–575PubMedGoogle Scholar
  2. Battista SP (1971) Agents affecting mucociliary activity. In: Turner RA, Hebborn P (eds) Screening methods in pharmacology, vol II. Academic, New York/London, pp 167–202CrossRefGoogle Scholar
  3. Carson S, Goldhamer R, Carpenter R (1966) Mucus transport in the respiratory tract. Am Rev Respir Dis 93:86–92PubMedGoogle Scholar
  4. Dalhamn T (1956) Mucous flow and ciliary activity in the trachea of healthy rats and rats exposed to respiratory irritant gases (SO2, H3N, HCHO). A functional and morphologic (light microscopic and electron microscopic) study, with special reference to technique. Acta Physiol Scand 36(Suppl 123):1–161Google Scholar
  5. Deitmer Th (1989) Physiology and pathology of the mucociliary system. Special regards to mucociliary transport in malignant lesions of the human larynx. Karger Basel, Chapter 5: methods of investigation of mucociliary transport, pp 26–34, Chapter 9: pathophysiology and pharmacology of the mucociliary system, pp 47–54Google Scholar
  6. Friedman M, Stott FD, Poole DO, Dougherty R, Chapman GA, Watson H, Sackner MA (1977) A new roentgenographic method for estimating mucus velocity in airways. Am Rev Respir Dis 115:67–72PubMedGoogle Scholar
  7. Giordano AM, Shih CK, Holsclaw DS, Khan MA, Litt M (1977) Mucus clearance: in vivo canine tracheal vs. in vitro bullfrog palate studies. J Appl Physiol 42:761–766PubMedGoogle Scholar
  8. Giordano AM, Holsclaw D, Litt M (1978) Mucus rheology and mucociliary clearance: normal physiologic state. Am Rev Respir Dis 118:245–250PubMedGoogle Scholar
  9. Iravani J (1971) Physiologie und Pathophysiologie der Cilientätigkeit und des Schleimtransports im Tracheobronchialbaum. (Untersuchungen an Ratten). Pneumonologie 144:93–112CrossRefPubMedGoogle Scholar
  10. Kensler CJ, Battista SP (1966) Chemical and physical factors affecting mammalian ciliary activity. Am Rev Respir Dis 93:93–102PubMedGoogle Scholar
  11. Kochmann M (1930) Zur Pharmakologie der Expektorantien. Wirkung auf die Flimmerbewegung. Naunyn Schmiedebergs Arch Exp Pathol Pharmakol 150:23–38CrossRefGoogle Scholar
  12. Leitch GJ, Frid LH, Phoenix D (1985) Effects of ethanol on mucociliary clearance. Alcohol Clin Exp Res 9:277–280CrossRefPubMedGoogle Scholar
  13. Sackner MA, Reinhart M, Arkin B (1977) Effects of beclomethasone diproprionate on tracheal mucus velocity. Am Rev Respir Dis 115:1069–1070Google Scholar
  14. Sadé J, Eliezer N, Silberberg A, Nevo AC (1970) The role of mucus in transport by cilia. Am Rev Respir Dis 102:48–52PubMedGoogle Scholar
  15. Ukai K, Sakakura Y, Saida S (1985) Interaction between mucociliary transport and the ciliary beat of chicken nasal mucosa. Arch Otorhinolaryngol 242:225–231CrossRefPubMedGoogle Scholar

Culture of Tracheal Epithelial Cells

  1. Emura M, Riebe M, Ochiai M, Aufderheide M, Germann P, Mohr U (1990) New functional cell-culture approach to pulmonary carcinogenesis and toxicology. Cancer Res Clin Oncol 116:557–562CrossRefGoogle Scholar
  2. Freitag A, Reimann A, Wessler I, Racké K (1996) Effect of bacterial lipopolysaccharides (LPS) and tumor necrosis factor-α (TNF-α) on rat tracheal epithelial cells in culture: morphology, proliferation and induction of nitric oxide (NO) synthase. Pulm Pharmacol 9:149–156CrossRefPubMedGoogle Scholar
  3. Hay DWP, Farmer SG, Goldie GR (1994) Inflammatory mediators and modulation of epithelial/smooth muscle interactions. In: Goldie RG (ed) Handbook of Immunopharmacology: immunopharmacology of epithelial barriers. Academic, London, pp 119–146Google Scholar
  4. Hey C, Wessler I, Racké K (1995) Nitric oxide (NO) synthase is inducible in rat, but not in rabbit alveolar macrophages, with a concomitant reduction in arginase activity. Naunyn Schmiedebergs Arch Pharmacol 351:651–659CrossRefPubMedGoogle Scholar
  5. Lechner JF, LaVeck MAA (1985) A serum-free method for culturing normal bronchial cells. J Tissue Cult Methods 9:43–48CrossRefGoogle Scholar
  6. Webber SE, Corfield DR (1993) The pathophysiology of airway inflammation and mucosal damage in asthma. In: Andrews P, Widdicombe J (eds) Pathophysiology of the Gut and Airways. Portland Press, London, pp 67–77Google Scholar

Alveolar Macrophages

  1. Gazin V, Kerdine S, Grillon G, Pallardy M, Raoul H (2004) Uranium induces TNFα secretion and MAPK activation in rat alveolar macrophage cell line. Toxicol Appl Pharmacol 194:49–59CrossRefPubMedGoogle Scholar
  2. Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with improved fluorescence properties. J Biol Chem 260:3440–3450PubMedGoogle Scholar
  3. Helmke RJ, Boyd RL, German VF, Mangos JA (1987) From growth factor dependence to growth factor responsiveness: the genesis of an alveolar macrophage cell line. In Vitro Cell Dev Biol 23:567–574CrossRefPubMedGoogle Scholar
  4. Mörk AC, Helmke RJ, Martinez JR, Michalek MT, Patchen MI, Zhang GH (1998) Effects of particulate and soluble (1–3)-α-glycans on Ca2+ influx in NR8383 alveolar macrophages. Immunopharmacology 40:77–89CrossRefPubMedGoogle Scholar
  5. Sirois J, Ménard G, Moses AS, Bissonette EY (2000) Importance of histamine in the cytokine network in the lung through H2 and H3 receptors: stimulation of IL-10 production. J Immunol 164:2964–2970CrossRefPubMedGoogle Scholar
  6. Sun X, Martinez JR, Zhang GH (1999) Inhibition of Ca2+ influx by pentoxifylline in NR8383 alveolar macrophages. Immunopharmacology 43:47–58CrossRefPubMedGoogle Scholar
  7. Yang L, Lian X, Cowen A, Xu H, Du H, Yan C (2004) Synergy between signal transducer and activator of transcription 3 and retinoic acid receptor-α in the regulation of the surfactant protein B gene in the lung. Mol Endocrinol 18:1520–1532CrossRefPubMedGoogle Scholar
  8. Zhang GH, Helmke RJ, Mörk AC, Martinez RJ (1997) Regulation of cytosolic free Ca2+ in cultured rat macrophages (NR8383). J Leukoc Biol 62:341–348PubMedGoogle Scholar
  9. Zhu X, Birnbaumer L (1998) Calcium channels formed by mammalian Trp homologues. News Physiol Sci 13:211–217PubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Integrated Physiology and Pharmacology Consulting, LLCPoughkeepsieUSA

Personalised recommendations