Advertisement

Diuretic and Saluretic Activity

  • Susan Emeigh Hart
Reference work entry

Abstract

Acetazolamide (Diamox) was one of the first synthetic nonmercurial diuretics. The mode of action was found to be inhibition of carbonic anhydrase. Carbonic anhydrase is a zinc-containing enzyme that catalyzes the reversible hydration (or hydroxylation) of CO2 to form H2CO3 which dissociates nonenzymatically into HCO3 and H+. The enzyme is located within the cytoplasm and at the apical and basolateral membranes of proximal tubules as well as on the apical (lumenal) surface of distal tubules and in the thick ascending limb of the loop of Henle. Its primary function is to enhance H+ secretion into the urine. At least three isoenzymes, designated as I, II, and II or A, B, and C, are known to exist.

Keywords

Carbonic Anhydrase Diabetes Insipidus Metabolic Cage Carbonic Anhydrase Activity Carbonic Anhydrase Inhibition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References and Further Reading

Diuretic and Saluretic Activity

  1. Armstrong JMD, Myers DV, Verpoorte JA, Edsall JT (1966) Purification and properties of human erythrocyte carbonic anhydrase. J Biol Chem 241:5137–5149PubMedGoogle Scholar
  2. Caprioli J (1985) The pathogenesis and medical management of glaucoma. Drug Dev Res 6:193–215CrossRefGoogle Scholar
  3. Eveloff J, Swenson ER, Maren TH (1979) Carbonic anhydrase activity of brush border and plasma membranes prepared from rat kidney cortex. Biochem Pharmacol 28:1434–1437CrossRefPubMedGoogle Scholar
  4. Friedland BR, Maren TH (1984) Carbonic anhydrase: Pharmacology of inhibitors and treatment of glaucoma. In: Pharmacology of the eye. Handbook Exp Pharmacol 69:279–309CrossRefGoogle Scholar
  5. Landolfi C, Marchetti M, Ciocci G, Milanese C (1997) Development and pharmacological characterization of a modified procedure for the measurement of carbonic anhydrase activity. J Pharmacol Toxicol Methods 38:169–172CrossRefPubMedGoogle Scholar
  6. Lukasi HC (2005) Low dietary zinc decreases erythrocyte carbonic anhydrase activities and impairs cardiorespiratory function in men during exercise. Am J Clin Nutr 81:1045–1051Google Scholar
  7. Maren TH (1960) A simplified micromethod for the determination of carbonic anhydrase and its inhibitors. J Pharmacol Exp Ther 130:26–29PubMedGoogle Scholar
  8. Maren TH (1967) Carbonic anhydrase: chemistry, physiology, and inhibition. Physiol Rev 47:595–781PubMedGoogle Scholar
  9. Okusa MD, Ellison DH (2000) Physiology and pathophysiology of diuretic action. In: Seldon DW, Giebsich G (eds) The kidney: physiology and pathophysiology, 3rd edn. Lippincott, Williams and Wilkins, PhiladelphiaGoogle Scholar
  10. Philpot FJ, Philpot JSL (1936) A modified colorimetric estimation of carbonic anhydrase. Biochem J 30:2191–2193PubMedCentralCrossRefPubMedGoogle Scholar
  11. Wistrand PJ, Knuuttila K-G (1980) Bovine lens carbonic anhydrases: purification and properties. Exp Eye Res 30:277–290CrossRefPubMedGoogle Scholar
  12. Wistrand PJ, Schenholm M, Lönnerholm G (1986) Carbonic anhydrase isoenzymes CA I and CA II in the human eye. Invest Ophthalmol Vis Sci 27:419–428PubMedGoogle Scholar

In Vivo Methods

  1. Cummings JR, Haynes JD, Lipchuck LM, Ronsberg MA (1960) A sequential probability ratio method for detecting compounds with diuretic activity in rats. J Pharmacol Exp Ther 128:414–418PubMedGoogle Scholar
  2. Kau ST, Keddie JR, Andrews D (1984) A method for screening diuretic agents in the rat. J Pharmacol Methods 11:67–75CrossRefPubMedGoogle Scholar
  3. Klatt P, Muschaweck R, Bossaller W, Magerkurth KO, Vanderbeeke O (1997) Method of collecting urine and comparative investigation of quantities excreted by cats and dogs after furosemide. Am J Vet Res 36:919–923Google Scholar
  4. Laycock JF, Chatterji U, Seckl JR, Gartside IB (1994) The abnormal quinine drinking aversion in the Brattleboro rat with diabetes insipidus is reversed by the vasopressin agonist DDAVP: a possible role for vasopressin in the motivation to drink. Physiol Behav 55:407–412CrossRefPubMedGoogle Scholar
  5. Lipschitz WL, Hadidian Z, Kerpcsar A (1943) Bioassay of diuretics. J Pharmacol Exp Ther 79:97–110Google Scholar
  6. Muschaweck R, Hajdu P (1964) Die saludiuretische Wirksamkeit der Chlor-N-(2-furylmethyl)-5-sulfamyl-anthranilsäure. Arzneim Forsch 14:44–47Google Scholar
  7. Muschaweck R, Sturm K (1972) Diuretika. In: Ehrhart G, Ruschig H (eds) Arzneimittel. Entwicklung – Wirkung – Darstellung, vol 2. Verlag Chemie, Weinheim/Bergstrasse, pp 317–328Google Scholar
  8. Nyunt-Wai V, Laycock JF (1990) The pressor response to vasopressin is not attenuated by hypertonic NaCl in the anaesthetized Brattleboro rat. J Physiol 430:35PGoogle Scholar
  9. Schmale H, Richter D (1984) Single base deletion in the vasopressin gene is the cause of diabetes insipidus in Brattleboro rats. Nature 308:705–709CrossRefPubMedGoogle Scholar
  10. Schmale H, Ivell M, Breindl D, Darmer D, Richter D (1984) The mutant vasopressin gene from diabetes insipidus (Brattleboro) rats is transcribed but the message is not efficiently translated. EMBO J 3:3289–3293PubMedCentralPubMedGoogle Scholar
  11. Szot P, Dorsa DM (1992) Cytoplasmatic and nuclear vasopressin RNA in hypothalamic and extrahypothalamic neurons of the Brattleboro rat: an in situ hybridization study. Mol Cell Neurosci 3:224–236CrossRefPubMedGoogle Scholar
  12. Valtin H, Sawyer WH, Sokol HW (1965) Neurohypophyseal principles in rats homozygous and heterozygous for hypothalamic diabetes insipidus (Brattleboro strain). Endocrinology 77:701–706CrossRefPubMedGoogle Scholar

Saluretic Activity in Rats

  1. Bicking JB, Mason JW, Woltersdorf OW, Jones JH, Kwong SF, Robb CM, Cragoe EJ (1965) Pyrazine diuretics. I. N-amidino-3-amino-6-halopyrazinecarboxamides. J Med Chem 8:638–642CrossRefGoogle Scholar
  2. Kagawa CM, Cella JA, Van Arman CG (1957) Action of new steroids in blocking effects of aldosterone and desoxycorticosterone on salt. Science 126:1015–1016CrossRefPubMedGoogle Scholar
  3. Muschaweck R, Hajdu P (1964) Die saludiuretische Wirksamkeit der Chlor-N-(2-furylmethyl)-5-sulfamyl-anthranilsäure. Arzneim Forsch 14:44–47Google Scholar
  4. Muschaweck R, Sturm K (1972) Diuretika. In: Ehrhart G, Ruschig H (eds) Arzneimittel. Entwicklung – Wirkung – Darstellung, vol 2. Verlag Chemie, Weinheim/Bergstrasse, pp 317–328Google Scholar

Diuretic and Saluretic Activity in Dogs

  1. Baer JE (1965) Animal techniques for evaluating diuretics. In: Nodin HJ, Siegler PE (eds) Animal and clinical pharmacologic techniques in drug evaluation. Year Book Medical, Chicago, pp 231–236Google Scholar
  2. Muschaweck R, Hajdu P (1964) Die saludiuretische Wirksamkeit der Chlor-N-(2-furylmethyl)-5-sulfamyl-anthranilsäure. Arzneim Forsch 14:44–47Google Scholar
  3. Muschaweck R, Sturm K (1972) Diuretika. In: Ehrhart G, Ruschig H (eds) Arzneimittel. Entwicklung – Wirkung – Darstellung, vol 2. Verlag Chemie, Weinheim/Bergstrasse, pp 317–328Google Scholar
  4. Suki W, Rector FC, Seldin DW (1965) The site of action of furosemide and other sulfonamide diuretics in the dog. J Clin Invest 44:1458–1469PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Non-Clinical Drug SafetyBoehringer Ingelheim Pharmaceuticals, IncRidgefieldUSA

Personalised recommendations