Skip to main content

α- and β-Adrenoreceptor Binding

  • Reference work entry
  • 409 Accesses

Abstract

α1-Adrenoceptors are widely distributed and are activated either by norepinephrine released from sympathetic nerve terminals or by epinephrine released from the adrenal medulla.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   2,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   5,499.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References and Further Reading

α 1-Adrenoreceptor Binding

  • Aboud R, Shafii M, Docherty JR (1993) Investigation of the subtypes of α 1-adrenoceptor mediating contractions of rat aorta, vas deferens and spleen. Br J Pharmacol 109:80–87

    PubMed Central  CAS  PubMed  Google Scholar 

  • Adolfo JA et al (1989) Species heterogeneity of hepatic α1- adrenoceptors: α1A-, α1B-, and α1C-subtypes. Biochem Biophys Res Commun 186:760–767

    Google Scholar 

  • Ahlquist RP (1948) A study of the adrenotropic receptors. Am J Physiol 153:586–600

    Google Scholar 

  • Alexander S, Peters J, Mathie A, MacKenzie G, Smith A (2001) TiPS nomenclature supplement 2001

    Google Scholar 

  • Bristow MR, Minobe W, Rasmussen R, Hershberger RE, Hoffman BB (1988) Alpha-1 adrenergic receptors in the nonfailing and failing human heart. J Pharmacol Exp Ther 247(3):1039–1045

    CAS  PubMed  Google Scholar 

  • Bylund DB, Eikenburg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, Molinoff PB, Ruffolo RR, Trendelenburg U (1994) IV. International union of pharmacology nomenclature of adrenoceptors. Pharmacol Rev 46:121–136

    Google Scholar 

  • Bylund DB, Bond RA, Clarke DE, Eikenburg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, Molinoff PB, Ruffolo RR, Strosberg AD, Trendelenburg U (1998) Adrenoceptors. The IUPHAR compendium of receptor characterization and classification, IUPHAR Media, London, pp. 58–74

    Google Scholar 

  • Calzada BC, de Artiñano AA (2001) Alpha-adrenoceptor subtypes. Pharmacol Res 44(3):195–208

    Google Scholar 

  • Cavalli A, Lattion AL, Hummler E, Nenniger M, Pedrazzini T, Aubert JF, Michel MC, Yang M, Lembo G, Vecchione C, Mostardini M, Schmidt A, Beermann F, Cotecchia S (1997) Decreased blood pressure response in mice deficient of the α1b-adrenergic receptor. Proc Natl Acad Sci USA 94:11589–11594

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chen ZJ, Minneman KP (2005) Recent progress in alpha1-adrenergic receptor research. Acta Pharmacol Sin 26(11):1281–1287, Review

    CAS  PubMed  Google Scholar 

  • Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Google Scholar 

  • Cotecchia S, Schwinn DA, Randall RR, Lefkowitz RJ, Caron MG, Kobilka BK (1988) Molecular cloning and expression of the cDNA for the hamster alpha 1-adrenergic receptor. Proc Natl Acad Sci U S A A85(19):7159–7163

    Google Scholar 

  • Couldwell C, Jackson A, O’Brien H, Chess-Williams R (1993) Characterization of the α1-adrenoceptors of rat prostate gland. J Pharm Pharmacol 45:922–924

    CAS  PubMed  Google Scholar 

  • Docherty JR (2010) Subtypes of functional alpha1-adrenoceptor. Cell Mol Life Sci 67(3):405–417

    CAS  PubMed  Google Scholar 

  • Eltze M, Boer R (1992) The adrenoceptor agonist, SDZ NVI 085, discriminates between α1A-and α1B adrenoceptorsubtypes in vas deferens, kidney and aorta of the rat. Eur J Pharmacol 224:125–136

    CAS  PubMed  Google Scholar 

  • Endoh M, Takanashi M, Norota I (1992) Role of alpha1A adrenoceptor subtype in production of the positive inotropic effect mediated via myocardial alpha1 adrenoceptors in the rabbit papillary muscle: influence of selective alpha1A subtype antagonists WB 4101 and 5-methylurapidil. Naunyn-Schmiedeberg’s Arch Pharmacol 345:578–585

    CAS  Google Scholar 

  • Esbenshade TA, Hirasawa A, Tsujimoto G, Tanaka T, Yano J, Minneman KP, Murphy TJ (1995) Cloning of the human alpha 1d-adrenergic receptor and inducible expression of three human subtypes in SK-N-MC cells.Mol. Pharmacology 47(5):977–985

    CAS  Google Scholar 

  • Ford AP, Williams TJ, Blue DR, Clarke DE (1994) Alpha 1-adrenoceptor classification: sharpening Occam’s razor. Trends Pharmacol Sci 15(6):167–170

    CAS  PubMed  Google Scholar 

  • Forray C, Bard JA, Wetzel JM, Chiu G, Shapiro E, Tang R, Lepor H, Hartig PR, Weinshank RL, Branchek TA et al (1994) The alpha 1-adrenergic receptor that mediates smooth muscle contraction in human prostate has the pharmacological properties of the cloned human alpha 1c subtype. Mol Pharmacol 45(4):703–708

    CAS  PubMed  Google Scholar 

  • García-Sáinz JA (1993) α1-adrenergic action: receptor subtypes, signal transduction and regulation. Cell Signal 5:539–547

    PubMed  Google Scholar 

  • García-Sáinz JA, Romero-Avila MT, Hernandez RA, Macias-Silva M, Olivares-Reyes A, González-Espinosa C (1992) Species heterogeneity of hepatic α1-adrenoceptors: α1A-, α1B- and α1C-subtypes. Biochem Biophys Res Commun 186:760–767

    PubMed  Google Scholar 

  • Hague C, Chen Z, Uberti M, Minneman KP (2003) Alpha(1)-adrenergic receptor subtypes: non-identical triplets with different dancing partners? Life Sci 74(4):411–418

    CAS  PubMed  Google Scholar 

  • Han C, Abel PW, Minneman KP (1987) Heterogeneity of alpha 1-adrenergic receptors revealed by chlorethylclonidine. Mol Pharmacol 32(4):505–510

    CAS  PubMed  Google Scholar 

  • Han C, Li J, Minneman KP (1990) Subtypes of alpha 1-adrenoceptors in rat blood vessels. Eur J Pharmacol 190(1–2):97–104

    CAS  PubMed  Google Scholar 

  • Hieble JP, Ruffolo RR Jr (1997) Recent advances in the identification of α1- and α2-adrenoceptor subtypes. Therapeutic implications. Expert Opin Investig Drugs 6:367–387

    CAS  PubMed  Google Scholar 

  • Hirasawa A, Horie K, Tanaka T, Takagaki K, Murai M, Yano J, Tsujimoto G (1993) Cloning, functional expression and tissue distribution of human cDNA for the alpha 1C-adrenergic receptor. Biochem Biophys Res Commun 195(2):902–909

    CAS  PubMed  Google Scholar 

  • Hwang KC, Gray CD, Sweet WE, Moravec CS, Im MJ (1996) Alpha 1-adrenergic receptor coupling with Gh in the failing human heart. Circulation 94(4):718–726

    CAS  PubMed  Google Scholar 

  • Jensen BC, Swigart PM, De Marco T, Hoopes C, Simpson PC (2009) {alpha}1-Adrenergic receptor subtypes in nonfailing and failing human myocardium. Circ Heart Fail 2(6):654–663

    PubMed Central  CAS  PubMed  Google Scholar 

  • Johnson RD, Minneman KP (1987) Differentiation of alpha 1-adrenergic receptors linked to phosphatidylinositol turnover and cyclic AMP accumulation in rat brain. Mol Pharmacol 31(3):239–246

    CAS  PubMed  Google Scholar 

  • Kenny BB, Chalmers DH, Philpott PC, Naylor AM (1995) Characterization of an α1D-adrenoceptor mediating the contractile response of rat aorta to adrenaline. Br J Pharmacol 115:981–986

    PubMed Central  CAS  PubMed  Google Scholar 

  • Koch WJ, Lefkowitz RJ, Rockman HA (2000) Functional consequences of altering myocardial adrenergic receptor signaling. Annu Rev Physiol 62:237–260

    CAS  PubMed  Google Scholar 

  • Koshimizu TA, Yamauchi J, Hirasawa A, Tanoue A, Tsujimoto G (2002) Recent progress in alpha 1-adrenoceptor pharmacology. Biol Pharm Bull 25(4):401–408

    CAS  PubMed  Google Scholar 

  • Lin F, Owens WA, Chen S, Stevens ME, Kesteven S, Arthur JF, Woodcock EA, Feneley MP, Graham RM (2001) Targeted alpha(1A)-adrenergic receptor overexpression induces enhanced cardiac contractility but not hypertrophy. Circ Res 89(4):343–350

    CAS  PubMed  Google Scholar 

  • Link RE, Stevens MS, Kulatunga M, Scheinin M, Barsh GS, Kobilka BK (1995) Targeted inactivation of the gene encoding the mouse alpha 2c-adrenoceptor homolog. Mol Pharmacol 48(1):48–55

    Google Scholar 

  • Michel AD et al (1989) Identification of a single α1A-adrenoceptor corresponding to the α1A-subtype in rat submaxillary gland. Br J Pharmacol 98:833–889

    Google Scholar 

  • Michel MC, Hanft G, Gross G (1994) Radioligand binding studies of alpha 1-adrenoceptor subtypes in rat heart. Br J Pharmacol 111(2):533–538

    PubMed Central  CAS  PubMed  Google Scholar 

  • Minneman KP, Esbenshade TA (1994) α1-adrenergic receptor subtypes. Annu Rev Pharmacol Toxicol 34:117–133

    CAS  PubMed  Google Scholar 

  • Minneman KP, Han C, Abel PW (1988) Comparison of alpha 1-adrenergic receptor subtypes distinguished by chlorethylclonidine and WB 4101. Mol Pharmacol 33(5):509–514

    CAS  PubMed  Google Scholar 

  • Morrow AL, Creese I (1986) Characterization of alpha 1-adrenergic receptor subtypes in rat brain: a reevaluation of [3H]WB4104 and [3H]prazosin binding. Mol Pharmacol 29(4):321–330

    CAS  PubMed  Google Scholar 

  • Muramatsu I, Tanaka T, Suzuki F, Li Z, Hiraizumi-Hiraoka Y, Anisuzzaman AS, Yamamoto H, Horinouchi T, Morishima S (2005) Quantifying receptor properties: the tissue segment binding method – a powerful tool for the pharmacome analysis of native receptors. J Pharmacol Sci 98(4):331–339

    CAS  PubMed  Google Scholar 

  • Muramatsu I, Morishima S, Suzuki F, Yoshiki H, Anisuzzaman AS, Tanaka T, Rodrigo MC, Myagmar BE, Simpson PC (2008) Identification of alpha 1L-adrenoceptor in mice and its abolition by alpha 1A-adrenoceptor gene knockout. Br J Pharmacol 155(8):1224–1234

    PubMed Central  CAS  PubMed  Google Scholar 

  • Noguchi H, Muraoka R, Kigoshi S, Muramatsu I (1995) Pharmacological characterization of alpha 1-adrenoceptor subtypes in rat heart: a binding study. Br J Pharmacol 114(5):1026–1030

    PubMed Central  CAS  PubMed  Google Scholar 

  • O’Connell TD, Ishizaka S, Nakamura A, Swigart PM, Rodrigo MC, Simpson GL, Cotecchia S, Rokosh DG, Grossman W, Foster E, Simpson PC (2003) The alpha(1A/C)- and alpha(1B)-adrenergic receptors are required for physiological cardiac hypertrophy in the double-knockout mouse. J Clin Invest 111(11):1783–1791

    PubMed Central  PubMed  Google Scholar 

  • O’Connell TD, Jensen BC, Baker AJ, Simpson PC (2014) Cardiac alpha1-adrenergic receptors: novel aspects of expression, signaling mechanisms, physiologic function, and clinical importance. Pharmacol Rev 66(1):308–333

    PubMed Central  PubMed  Google Scholar 

  • Ohmura T, Oshita M, Kigoshi S, Muramatsu I (1992) Identification of α1-adrenoceptor subtypes in the rat vas deferens: binding and functional studies. Br J Pharmacol 107:697–704

    PubMed Central  CAS  PubMed  Google Scholar 

  • Oshita M, Kigoshi S, Muramatsu I (1993) Pharmacological characterization of two distinct α1-adrenoceptor subtypes in rabbit thoracic aorta. Br J Pharmacol 108:1071–1076

    PubMed Central  CAS  PubMed  Google Scholar 

  • Perez DM (2007) Structure-function of alpha1-adrenergic receptors. Biochem Pharmacol 73(8):1051–1062

    PubMed Central  CAS  PubMed  Google Scholar 

  • Perez DM, Piascik MT, Graham RM (1991) Solution-phase library screening for the identification of rare clones: isolation of an alpha 1D-adrenergic receptor cDNA. Mol Pharmacol 40(6):876–883

    CAS  PubMed  Google Scholar 

  • Philipp M, Hein L (2004) Adrenergic receptor knockout mice: distinct functions of 9 receptor subtypes. Pharmacol Ther 101(1):65–74

    Google Scholar 

  • Regan JW, Cotecchia S (1992) The α-adrenergic receptors: new subtypes, pharmacology, and coupling mechanisms. In: Brann MR (ed) Molecular Biology of G-Protein-coupled receptors. Birkhäuser, Boston Basel Berlin, pp 76–112

    Google Scholar 

  • Rokosh DG, Simpson PC (2002) Knockout of the alpha 1A/C-adrenergic receptor subtype: the alpha 1A/C is expressed in resistance arteries and is required to maintain arterial blood pressure. Proc Natl Acad Sci U S A 99(14):9474–9479

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ruffolo RR, Stadel JM, Hieble JP (1994) α-adrenoceptors: recent developments. Med Res Rev 14:270–279

    Google Scholar 

  • Satoh M, Kojima C, Takayanagi I (1992) Characterization of α1-adrenoceptor subtypes labeled by [3H]prazosin in single cells prepared from rabbit thoracic aorta. Eur J Pharmacol 221:35–41

    CAS  PubMed  Google Scholar 

  • Sayet I, Neuilly G, Rakotoarisoa L, Mironneau C, Mironneau J (1993) Relation between alpha 1-adrenoceptor subtypes and noradrenaline-induced contraction in rat portal vein smooth muscle. Br J Pharmacol 110(1):207–212

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schwinn DA, Lomasney JW (1992) Pharmacologic characterization of cloned α1-adrenoceptor subtypes: selective antagonists suggest the existence of a fourth subtype. Eur J Pharmacol Mol Pharmacol Sect 227:433–436

    CAS  Google Scholar 

  • Schwinn DA, Lomasney JW, Lorenz W, Szklut PJ, Fremeau RT Jr, Yang-Feng TL, Caron MG, Lefkowitz RJ, Cotecchia S (1990) Molecular cloning and expression of the cDNA for a novel alpha 1-adrenergic receptor subtype. J Biol Chem 265(14):8183–8189

    CAS  PubMed  Google Scholar 

  • Schwinn DA, Johnston GI, Page SO, Mosley MJ, Wilson KH, Worman NP, Campbell S, Fidock MD, Furness LM, Parry-Smith DJ et al (1995) Cloning and pharmacological characterization of human alpha-1 adrenergic receptors: sequence corrections and direct comparison with other species homologues. J Pharmacol Exp Ther 272(1):134–142

    CAS  PubMed  Google Scholar 

  • Stam WB, Van der Graaf PH, Saxena PR (1998) Functional characterization of the pharmacological profile of the putative α1B-adrenoceptor antagonist, (+)-cyclazocine. Eur J Pharmacol 361:79–83

    CAS  PubMed  Google Scholar 

  • Steinfath M, Chen YY, Lavický J, Magnussen O, Nose M, Rosswag S, Schmitz W, Scholz H (1992a) Cardiac alpha 1-adrenoceptor densities in different mammalian species. Br J Pharmacol 107(1):185–188

    PubMed Central  CAS  PubMed  Google Scholar 

  • Steinfath M, Danielsen W, von der Leyen H, Mende U, Meyer W, Neumann J, Nose M, Reich T, Schmitz W, Scholz H, Starbatty J, Stein B, Döring V, Kalmar P, Haverich A (1992b) Reduced alpha 1- and beta 2-adrenoceptor-mediated positive inotropic effects in human end-stage heart failure. Br J Pharmacol 105(2):463–469

    PubMed Central  CAS  PubMed  Google Scholar 

  • Stewart AF, Rokosh DG, Bailey BA, Karns LR, Chang KC, Long CS, Kariya K, Simpson PC (1994) Cloning of the rat alpha 1C-adrenergic receptor from cardiac myocytes. alpha 1C, alpha 1B, and alpha 1D mRNAs are present in cardiac myocytes but not in cardiac fibroblasts. Circ Res 75(4):796–802

    CAS  PubMed  Google Scholar 

  • Tanaka T, Zhang L, Suzuki F, Muramatsu I (2004) Alpha-1 adrenoceptors: evaluation of receptor subtype-binding kinetics in intact arterial tissues and comparison with membrane binding. Br J Pharmacol 141(3):468–476

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tanoue A, Koshimizu TA, Tsujimoto G (2002a) Transgenic studies of alpha(1)-adrenergic receptor subtype function. Life Sci 71(19):2207–2215

    CAS  PubMed  Google Scholar 

  • Tanoue A, Nasa Y, Koshimizu T, Shinoura H, Oshikawa S, Kawai T, Sunada S, Takeo S, Tsujimoto G (2002b) The alpha(1D)-adrenergic receptor directly regulates arterial blood pressure via vasoconstriction. J Clin Invest 109(6):765–775

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vargas HM, Cunningham D, Zhou L, Hartman HB, Gorman AJ (1993) Cardiovascular effects of chloroethylclonidine, a irreversible α1B-adrenoceptor antagonist, in the unanesthetized rat: a pharmacological analysis in vivo and in vitro. J Pharmacol Exp Ther 266:864–871

    CAS  PubMed  Google Scholar 

  • Veenstra DMJ, van Buuren KJH, Nijkamp FP (1992) Determination of α1-adrenoceptor subtype selectivity by [3H]-prazosin displacement studies in guinea-pig cerebral cortex and rat spleen membranes. Br J Pharmacol 107:202–206

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang M, Reese J, Cotecchia S, Michel MC (1998) Murine alpha1-adrenoceptor subtypes. I. Radioligand binding studies. J Pharmacol Exp Ther 286(2):841–847

    CAS  PubMed  Google Scholar 

  • Zhong H, Minneman KP (1999) Alpha1-adrenoceptor subtypes. Eur J Pharmacol 375(1–3):261–276

    CAS  PubMed  Google Scholar 

α 2-Adrenoreceptor Binding

  • Altman JD, Trendelenburg AU, MacMillan L, Bernstein D, Limbird L, Starke K, Kobilka BK, Hein L (1999) Abnormal regulation of the sympathetic nervous system in alpha2A-adrenergic receptor knockout mice. Mol Pharmacol 56(1):154–161

    CAS  PubMed  Google Scholar 

  • Beckeringh JJ, Thoolen MJ, De Jonge A, Wilffert B, Timmermans PB, Van Zwieten PA (1984) The contractions induced in rat and guinea-pig aortic strips by the alpha 2-adrenoceptor selective agonists B-HT 920 and UK 14,304 are mediated by alpha 1-adrenoceptors. Eur J Pharmacol 104(3–4):197–203

    CAS  PubMed  Google Scholar 

  • Blaxall HS, Murphy TJ, Baker JC, Ray C, Bylund DB (1991) Characterization of the alpha-2C adrenergic receptor subtype in the opossum kidney and in the OK cell line. J Pharmacol Exp Ther 259(1):323–329

    CAS  PubMed  Google Scholar 

  • Boyajian CL, Leslie FM (1987) Pharmacological evidence for alpha-2 adrenoceptor heterogeneity: differential binding properties of [3H]rauwolscine and [3H]idazoxan in rat brain. J Pharmacol Exp Ther 241:1092–1098

    CAS  PubMed  Google Scholar 

  • Boyajian CL, Loughlin SE, Leslie FM (1987) Anatomical evidence for alpha-2 adrenoceptor heterogeneity: differential autoradiographic distributions of [3H]rauwolscine and [3H]idazoxan in rat brain. J Pharmacol Exp Ther 241(3):1079–1091

    CAS  PubMed  Google Scholar 

  • Brasch H (1991) No influence of prejunctional α2-adrenoceptors on the effects of nicotine and tyramine in guinea-pig atria. J Auton Pharmacol 11:37–44

    CAS  PubMed  Google Scholar 

  • Broadhurst AM, Alexander BS, Wood MD (1988) Heterogeneous 3H-rauwolscine binding sites in rat cortex: two alpha2-adrenoreceptor subtypes or an additional nonadrenergic interaction? Life Sci 43:83–92

    CAS  PubMed  Google Scholar 

  • Bücheler MM, Hadamek K, Hein L (2002) Two alpha(2)-adrenergic receptor subtypes, alpha(2A) and alpha(2C), inhibit transmitter release in the brain of gene-targeted mice. Neuroscience 109(4):819–826

    Google Scholar 

  • Bylund DB (1978) Subtypes of α2-adrenoceptors: pharmacological and molecular biological evidence converge. Trends Pharmacol Sci 9:356–361

    Google Scholar 

  • Bylund DB (1988) Subtypes of alpha 2-adrenoceptors: pharmacological and molecular biological evidence converge. Trends Pharmacol Sci 9(10):356–361

    CAS  PubMed  Google Scholar 

  • Bylund DB (1992) Subtypes of alpha 1- and alpha 2-adrenergic receptors. FASEB J 6(3):832–839

    CAS  PubMed  Google Scholar 

  • Bylund DB, Ray-Prenger C, Murphy TJ (1988) Alpha-2A and alpha-2B adrenergic receptor subtypes: antagonist binding in tissues and cell lines containing only one subtype. J Pharmacol Exp Ther 245:600–607

    CAS  PubMed  Google Scholar 

  • Bylund DB, Eikenburg DC, Hieble JP, Langer SZ, Lefkowitz RJ, Minneman KP, Molinoff PB, Ruffolo RR, Trendelenburg U (1994) IV. International union of pharmacology nomenclature of adrenoceptors. Pharmacol Rev 46:121–136

    Google Scholar 

  • Calzada BC, de Artiñano AA (2001) Alpha-adrenoceptor subtypes. Pharmacol Res 44(3):195–208

    Google Scholar 

  • Cheung YD, Barnett DB, Nahorski SR (1982) [3H]Rauwolscine and [3H]yohimbine binding to rat cerebral and human platelet membranes: possible heterogeneity of alpha 2-adrenoceptors. Eur J Pharmacol 84(1–2):79–85

    CAS  PubMed  Google Scholar 

  • Connaughton S, Docherty R (1989) Functional evidence for heterogeneity of peripheral prejunctional α2- adrenoceptors. Br J Pharmacol 101:285–290

    Google Scholar 

  • Docherty JR (1998) Subtypes of functional alpha1- and alpha2-adrenoceptors. Eur. J Pharmacol 361(1):1–15

    Google Scholar 

  • Fairbanks CA, Stone LS, Wilcox GL (2009) Pharmacological profiles of alpha 2 adrenergic receptor agonists identified using genetically altered mice and isobolographic analysis. Pharmacol Ther 123(2):224–238

    PubMed Central  CAS  PubMed  Google Scholar 

  • Feller DJ, Bylund DB (1984) Comparison of alpha-2 adrenergic receptors and their regulation in rodent and porcine species. J Pharmacol Exp Ther 228(2):275–282

    CAS  PubMed  Google Scholar 

  • Flordellis C, Manolis A, Scheinin M, Paris H (2004) Clinical and pharmacological significance of alpha2-adrenoceptor polymorphisms in cardiovascular diseases. Int J Cardiol 97(3):367–372

    PubMed  Google Scholar 

  • Gilsbach R, Hein L (2012) Are the pharmacology and physiology of α2 adrenoceptors determined by α-heteroreceptors and autoreceptors respectively? Br J Pharmacol 165(1):90–102

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goldberg MR, Robertson D (1983) Yohimbine: a pharmacological probe for the study of the 2-adrenoreceptor. Pharmacol Rev 35:143–180

    CAS  PubMed  Google Scholar 

  • Guyenet PG (1997) Is the hypotensive effect of clonidine and related drugs due to imidazoline binding sites? Am J Physiol 273(5 Pt 2):R1580–R1584

    Google Scholar 

  • Hein L (2001) The alpha 2-adrenergic receptors: molecular structure and in vivo function. Z Kardiol 90(9):607–612

    CAS  PubMed  Google Scholar 

  • Hein L, Altman JD, Kobilka BK (1999) Two functionally distinct alpha2-adrenergic receptors regulate sympathetic neurotransmission. Nature 402(6758):181–184

    CAS  PubMed  Google Scholar 

  • Kable JW, Murrin LC, Bylund DB (2000) In vivo gene modification elucidates subtype-specific functions of alpha(2)-adrenergic receptors. J Pharmacol Exp Ther 293(1):1–7

    CAS  PubMed  Google Scholar 

  • Knaus AE, Muthig V, Schickinger S, Moura E, Beetz N, Gilsbach R, Hein L (2007) Alpha2-adrenoceptor subtypes–unexpected functions for receptors and ligands derived from gene-targeted mouse models. Neurochem Int 51(5):277–281

    CAS  PubMed  Google Scholar 

  • Kobilka BK, Matsui H, Kobilka TS, Yang-Feng TL, Francke U, Caron MG, Lefkowitz RJ, Regan JW (1987) Cloning, sequencing, and expression of the gene coding for the human platelet alpha 2-adrenergic receptor. Science 238(4827):650–656

    Google Scholar 

  • Kobinger W, Walland A (1967) Investigations into the mechanism of the hypotensive effect of 2-(2,6-dichlorphenylamino)- 2-imidazoline-HCl. Eur J Pharmacol 2:155–162

    CAS  PubMed  Google Scholar 

  • Lakhlani PP, MacMillan LB, Guo TZ, McCool BA, Lovinger DM, Maze M, Limbird LE (1997) Substitution of a mutant alpha2a-adrenergic receptor via “hit and run” gene targeting reveals the role of this subtype in sedative, analgesic, and anesthetic-sparing responses in vivo. Proc Natl Acad Sci U S A 94(18):9950–9955

    PubMed Central  CAS  PubMed  Google Scholar 

  • Link RE, Stevens MS, Kulatunga M, Scheinin M, Barsh GS, Kobilka BK (1995) Targeted inactivation of the gene encoding the mouse alpha 2c-adrenoceptor homolog. Mol Pharmacol 48(1):48–55

    Google Scholar 

  • Link RE, Desai K, Hein L, Stevens ME, Chruscinski A, Bernstein D, Barsh GS, Kobilka BK (1996) Cardiovascular regulation in mice lacking alpha2-adrenergic receptor subtypes b and c. Science 273(5276):803–805

    CAS  PubMed  Google Scholar 

  • Lomasney JW, Allen LF, King K, Regan JW, Yang-Feng TL, Caron MG, Lefkowitz RJ (1990) Expansion of the alpha 2-adrenergic receptor family: cloning and characterization of a human alpha 2-adrenergic receptor subtype, the gene for which is located on chromosome 2. Proc Natl Acad Sci U S A A87(13):5094–5098

    Google Scholar 

  • Lorenz W, Lomasney JW, Collins S, Regan JW, Caron MG, Lefkowitz RJ (1990) Expression of three alpha 2-adrenergic receptor subtypes in rat tissues: implications for alpha 2 receptor classification. Mol Pharmacol 38(5):599–603

    CAS  PubMed  Google Scholar 

  • MacDonald E, Scheinin M (1995) Distribution and pharmacology of alpha 2-adrenoceptors in the central nervous system. J Physiol Pharmacol 46(3):241–258

    CAS  PubMed  Google Scholar 

  • MacDonald E, Kobilka BK, Scheinin M (1997) Gene targeting–homing in on alpha 2-adrenoceptor-subtype function. Trends Pharmacol Sci 8(6):211–219

    Google Scholar 

  • MacMillan LB, Hein L, Smith MS, Piascik MT, Limbird LE (1996) Central hypotensive effects of the alpha2a-adrenergic receptor subtype. Science 273(5276):801–803

    CAS  PubMed  Google Scholar 

  • Makaritsis KP, Handy DE, Johns C, Kobilka B, Gavras I, Gavras H (1999) Role of the alpha2B-adrenergic receptor in the development of salt-induced hypertension. Hypertension 33(1):14–17

    CAS  PubMed  Google Scholar 

  • Marjamäki A, Luomala K, Ala-Uotila S, Scheinin M (1993) Use of recombinant human α2-adrenoceptors to characterize subtype selectivity of antagonist binding. Eur J Pharmacol Mol Pharmacol Sect 246:219–226

    Google Scholar 

  • Michel AD, Loury DN, Withing RL (1989) Differences between the α2-adrenoceptor in rat submaxillary gland and the α2A- and α2B-adrenoceptor subtypes. Br J Pharmacol 98:890–897

    Google Scholar 

  • Minneman KP (1988) Alpha 1-adrenergic receptor subtypes, inositol phosphates, and sources of cell Ca2+. Pharmacol Rev 40(2):87–119

    CAS  PubMed  Google Scholar 

  • Motulsky HJ, Shattil SJ, Insel PA (1980) Characterization of alpha 2-adrenergic receptors on human platelets using [3H]yohimbine. Biochem Biophys Res Commun 97(4):1562–1570

    CAS  PubMed  Google Scholar 

  • Murphy TJ, Bylund DB (1988) Characterization of alpha- 2 adrenergic receptors in the OK cell, an opossum kidney cell line. J Pharmacol Exp Ther 244:571–578

    CAS  PubMed  Google Scholar 

  • Neylon CB, Summers RJ (1985) [3H]-rauwolscine binding to alpha 2-adrenoceptors in the mammalian kidney: apparent receptor heterogeneity between species. Br J Pharmacol 85(2):349–359

    PubMed Central  CAS  PubMed  Google Scholar 

  • Perry BD, U’Prichard DC (1981) [3H]rauwolscine (α-yohimbine): a specific radioligand for brain α2-adrenergic receptors. Eur J Pharmacol 76:461–464

    CAS  PubMed  Google Scholar 

  • Philipp M, Brede M, Hein L (2002) Physiological significance of alpha(2)-adrenergic receptor subtype diversity: one receptor is not enough. Am J Physiol Regul Integr Comp Physiol 283(2):R287–R295

    Google Scholar 

  • Philipp M, Hein L (2004) Adrenergic receptor knockout mice: distinct functions of 9 receptor subtypes. Pharmacol Ther 101(1):65–74

    Google Scholar 

  • Piascik MT, Soltis EE, Piascik MM, Macmillan LB (1996) Alpha-adrenoceptors and vascular regulation: molecular, pharmacologic and clinical correlates. Pharmacol Ther 72(3):215–241

    CAS  PubMed  Google Scholar 

  • Regan JW, Kobilka TS, Yang-Feng TL, Caron MG, Lefkowitz RJ, Kobilka BK (1988) Cloning and expression of a human kidney cDNA for an alpha 2-adrenergic receptor subtype. Proc Natl Acad Sci U S A 85(17):6301–6305

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ruffolo RR (1990) α2-adrenoceptor agonists and antagonists. Neurotransmissions 6(2):1–5

    Google Scholar 

  • Ruffolo RR, Nichols AJ, Stadel JM, Hieble JP (1993) Pharmacologic and therapeutic applications of α2- adrenoceptor subtypes. Annu Rev Pharmacol Toxicol 33:243–279

    CAS  PubMed  Google Scholar 

  • Sallinen J, Link RE, Haapalinna A, Viitamaa T, Kulatunga M, Sjöholm B, Macdonald E, Pelto-Huikko M, Leino T, Barsh GS, Kobilka BK, Scheinin M (1997) Genetic alteration of alpha 2C-adrenoceptor expression in mice: influence on locomotor, hypothermic, and neurochemical effects of dexmedetomidine, a subtype-nonselective alpha 2-adrenoceptor agonist. Mol Pharmacol 51(1):36–46

    CAS  PubMed  Google Scholar 

  • Sallinen J, Haapalinna A, Viitamaa T, Kobilka BK, Scheinin M (1998a) d-amphetamine and l-5-hydroxytryptophan-induced behaviours in mice with genetically-altered expression of the alpha2C-adrenergic receptor subtype. Neuroscience 86(3):959–965

    CAS  PubMed  Google Scholar 

  • Sallinen J, Haapalinna A, Viitamaa T, Kobilka BK, Scheinin M (1998b) Adrenergic alpha2C-receptors modulate the acoustic startle reflex, prepulse inhibition, and aggression in mice. J Neurosci 18(8):3035–3042

    CAS  PubMed  Google Scholar 

  • Sallinen J, Haapalinna A, MacDonald E, Viitamaa T, Lähdesmäki J, Rybnikova E, Pelto-Huikko M, Kobilka BK, Scheinin M (1999) Genetic alteration of the alpha2-adrenoceptor subtype c in mice affects the development of behavioral despair and stress-induced increases in plasma corticosterone levels. Mol Psychiatry 4(5):443–452

    CAS  PubMed  Google Scholar 

  • Satoh M, Takayanagi I (1992) Identification and characterization of the α2D-adrenoceptor subtype in single cells prepared from guinea pig tracheal smooth muscle. Jpn J Pharmacol 60:393–395

    CAS  PubMed  Google Scholar 

  • Scheibner J, Trendelenburg AU, Hein L, Starke K (2001) Stimulation frequency-noradrenaline release relationships examined in alpha2A-, alpha2B- and alpha2C-adrenoceptor-deficient mice. Naunyn Schmiedebergs Arch Pharmacol 364(4):321–328

    Google Scholar 

  • Scheinin M, Sallinen J, Haapalinna A (2001) Evaluation of the alpha2C-adrenoceptor as a neuropsychiatric drug target studies in transgenic mouse models. Life Sci 68(19–20):2277–2285

    CAS  PubMed  Google Scholar 

  • Starke K (2001) Presynaptic autoreceptors in the third decade: focus on alpha2-adrenoceptors. J Neurochem 78(4):685–693

    Google Scholar 

  • Stone LS, MacMillan LB, Kitto KF, Limbird LE, Wilcox GL (1997) The alpha2a adrenergic receptor subtype mediates spinal analgesia evoked by alpha2 agonists and is necessary for spinal adrenergic-opioid synergy. J Neurosci 17(18):7157–7165

    Google Scholar 

  • Summers RJ, Barnett DB, Nahorski SR (1983) Characteristics of adrenoceptors in homogenates of human cerebral cortex labelled with (3H)-rauwolscine. Life Sci 33:1105–1112

    CAS  PubMed  Google Scholar 

  • Takano Y, Takano M, Yaksh TL (1992) The effect of intrathecally administered imiloxan and WB4101: possible role of α2-adrenoceptor subtypes in the spinal cord. Eur J Pharmacol 219:465–468

    CAS  PubMed  Google Scholar 

  • Trendelenburg AU, Klebroff W, Hein L, Starke K (2001) A study of presynaptic alpha2-autoreceptors in alpha2A/D-, alpha2B- and alpha2C-adrenoceptor-deficient mice. Naunyn Schmiedebergs Arch Pharmacol 364(2):117–130

    Google Scholar 

  • Trendelenburg AU, Philipp M, Meyer A, Klebroff W, Hein L, Starke K (2003) All three alpha2-adrenoceptor types serve as autoreceptors in postganglionic sympathetic neurons. Naunyn-Schmiedebergs Arch Pharmacol 368:504–512

    Google Scholar 

  • Uhlén S, Wikberg JES (1990) Spinal cord α2-adrenoceptors are of the α2A-subtype: comparison with α2A- and α2B- adrenoceptors in rat spleen, cerebral cortex and kidney using [3H]-RX821002 ligand binding. Pharmacol Toxicol 69:341–345

    Google Scholar 

  • Uhlén S, Porter AC, Neubig RR (1994) The novel α2-adrenergic radioligand [3H]-MK912 is α2C-selective among human α2A-, α2B- and -α2C adrenoceptors. J Pharmacol Exp Ther 271:1558–1565

    PubMed  Google Scholar 

  • Uhlén S, Dambrova M, Näsman J, Schiöth HB, Gu Y, Wikberg-Mattson A, Wikberg JE (1998) [3H]RS79948-197 binding to human, guinea pig and pig α2A-, α2B- and -α2C adrenoceptors. Comparison with MK912, RX821002, rauwolscine and yohimbine. Eur J Pharmacol 343:93–101

    PubMed  Google Scholar 

Electrically Stimulated Release of [3H]Norepinephrine from Brain Slices

  • Bücheler MM, Hadamek K, Hein L (2002) Two alpha(2)-adrenergic receptor subtypes, alpha(2A) and alpha(2C), inhibit transmitter release in the brain of gene-targeted mice. Neuroscience 109(4):819–826

    Google Scholar 

  • Docherty JR (1998) Subtypes of functional alpha1- and alpha2-adrenoceptors. Eur. J Pharmacol 361(1):1–15

    Google Scholar 

  • Dooley DJ, Donovan CM, Meder WP, Whetzel SZ (2002) Preferential action of gabapentin and pregabalin at P/Q-type voltage-sensitive calcium channels: inhibition of K+−evoked [3H]-norepinephrine release from rat neocortical slices. Synapse 45(3):171–190

    CAS  PubMed  Google Scholar 

  • Langer SZ (1981) Presynaptic regulation of the release of catecholamines. Pharmacol Rev 32:337–362

    Google Scholar 

  • Miller RJ (1998) Presynaptic receptors. Annu Rev Pharmacol Toxicol 38:201–227

    CAS  PubMed  Google Scholar 

  • Philipp M, Brede M, Hein L (2002) Physiological significance of alpha(2)-adrenergic receptor subtype diversity: one receptor is not enough. Am J Physiol Regul Integr Comp Physiol 283(2):R287–R295

    Google Scholar 

  • Raiteri M et al (1984) Handbook of Neurochemistry, vol 6. Plenum Publishing, New York, pp 431–462

    Google Scholar 

  • Reynolds JL, Ignatowski TA, Spengler RN (2005) Effect of tumor necrosis factor-alpha on the reciprocal G-protein-induced regulation of norepinephrine release by the alpha2-adrenergic receptor. J Neurosci Res 79(6):779–787

    CAS  PubMed  Google Scholar 

  • Scheibner J, Trendelenburg AU, Hein L, Starke K (2001) Stimulation frequency-noradrenaline release relationships examined in alpha2A-, alpha2B- and alpha2C-adrenoceptor-deficient mice. Naunyn Schmiedebergs Arch Pharmacol 364(4):321–328

    Google Scholar 

  • Starke K (1981) Presynaptic receptors. Annu Rev Pharmacol Toxicol 21:7–30

    CAS  PubMed  Google Scholar 

  • Starke K (2001) Presynaptic autoreceptors in the third decade: focus on alpha2-adrenoceptors. J Neurochem 78(4):685–693

    Google Scholar 

  • Trendelenburg AU, Klebroff W, Hein L, Starke K (2001) A study of presynaptic alpha2-autoreceptors in alpha2A/D-, alpha2B- and alpha2C-adrenoceptor-deficient mice. Naunyn Schmiedebergs Arch Pharmacol 364(2):117–130

    Google Scholar 

  • Trendelenburg AU, Philipp M, Meyer A, Klebroff W, Hein L, Starke K (2003) All three alpha2-adrenoceptor types serve as autoreceptors in postganglionic sympathetic neurons. Naunyn-Schmiedebergs Arch Pharmacol 368:504–512

    Google Scholar 

  • Vizi ES, Zsilla G, Caron MG, Kiss JP (2004) Uptake and release of norepinephrine by serotonergic terminals in norepinephrine transporter knock-out mice: implications for the action of selective serotonin reuptake inhibitors. J Neurosci 24(36):7888–7894

    CAS  PubMed  Google Scholar 

  • Zahniser NR et al (1986) Chemical and functional assays of receptor binding, 1986, short course 1, syllabus. Society for Neuroscience, Washington, DC, pp 73–81

    Google Scholar 

Imidazoline Receptor Binding

  • Alemany R, Olmos G, Escriba PV, Menargues A, Obach R, Garcia-Sevilla JA (1995) LSL, 60101, a selective ligand for imidazoline I2 receptors, on glial fibrillary acidic protein concentration. Eur J Pharmacol 280:205–210

    CAS  PubMed  Google Scholar 

  • Alemany R, Olmos G, Garcia-Sevilla JA (1997) Labeling of I2B-imidazoline receptors by [3H]2-(2-benzofuranyl)-2- imidazoline (2-BFI) in rat brain and liver. Characterization, regulation and relation to monoamine oxidase enzymes. Naunyn-Schmiedeberg’s Arch Pharmacol 356:39–47

    CAS  Google Scholar 

  • Atlas D, Burstein Y (1984) Isolation and partial purification of a clonidine-displacing endogenous brain substance. Eur J Biochem 144:287–293

    CAS  PubMed  Google Scholar 

  • Berdeu D, Puech R, Loubatières-Mariani MM, Bertrand G (1996) Agmatine is not a good candidate as endogenous ligand for imidazoline sites of pancreatic B cells and vascular bed. Eur J Pharmacol 308(3):301–304

    CAS  PubMed  Google Scholar 

  • Bock C, Niederhoffer N, Szabo B (1999) Analysis of the receptor involved in the central hypotensive effect of rilmenidine and moxonidine. Naunyn Schmiedebergs Arch Pharmacol 359(4):262–271

    CAS  PubMed  Google Scholar 

  • Bousquet P (1995) Imidazoline receptors: from basic concepts to recent developments. J Cardiovasc Pharmacol 26(Suppl 2):S1–S6

    CAS  PubMed  Google Scholar 

  • Bousquet P (1998) Imidazoline receptors: how many, where and why? Naunyn-Schmiedeberg’s Arch Pharmacol 358(Suppl 1):R 195

    Google Scholar 

  • Bousquet P, Feldman J, Bloch R, Schwartz J (1981) The nucleus reticularis lateralis: a region highly sensitive to clonidine. Eur J Pharmacol 69(3):389–392

    CAS  PubMed  Google Scholar 

  • Bousquet P, Feldman J, Schwartz J (1984) Central cardiovascular effects of alpha adrenergic drugs: differences between catecholamines and imidazolines. J Pharmacol Exp Ther 230(1):232–236

    CAS  PubMed  Google Scholar 

  • Brown CM, MacKinnon AC, Redfern WS, William A, Linton C, Stewart M, Clague RU, Clark R, Spedding M (1995) RS- 45041-190: a selective, high affinity ligand for I2 imidazoline receptors. Br J Pharmacol 116:1737–1744

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chan SLF, Atlas D, James RFL, Morgan NG (1997) The effect of the putative endogenous imidazoline receptor ligand, clonidine-displacing substance, on insulin secretion from rat and human islets of Langerhans. Br J Pharmacol 120:926–932

    PubMed Central  CAS  PubMed  Google Scholar 

  • Coupry I, Podevin RA, Dausse JP, Parini A (1987) Evidence for imidazoline binding sites in basolateral membranes from rabbit kidney. Biochem Biophys Res Commun 147(3):1055–1060

    CAS  PubMed  Google Scholar 

  • Eglen RM, Hudson AL, Kendall DA, Nutt DJ, Morgan NG, Wilson VC, Dillon MP (1998) ‘Seeing through a glass darkly’: casting light on imidazoline ‘I’ sites. Trends Pharmacol Sci 19:381–390

    CAS  PubMed  Google Scholar 

  • Ernsberger P (1999) The I1-imidazoline receptor and its cellular signaling pathways. Ann N Y Acad Sci 881:35–53

    CAS  PubMed  Google Scholar 

  • Ernsberger P, Piletz JE, Graff LM, Graves ME (1995) Optimization of radioligand binding assays for I1 imidazoline sites. Ann N Y Acad Sci 763:163–168

    CAS  PubMed  Google Scholar 

  • Guyenet PG (1997) Is the hypotensive effect of clonidine and related drugs due to imidazoline binding sites? Am J Physiol 273(5 Pt 2):R1580–R1584

    Google Scholar 

  • Head GA (1995) Importance of imidazoline receptors in the cardiovascular actions of centrally acting antihypertensive agents. Ann N Y Acad Sci 763:531–540

    CAS  PubMed  Google Scholar 

  • Head GA (1999) Central imidazoline- and alpha 2-receptors involved in the cardiovascular actions of centrally acting antihypertensive agents. Ann N Y Acad Sci 881:279–286

    CAS  PubMed  Google Scholar 

  • Head GA, Mayorov DN (2006) Imidazoline receptors, novel agents and therapeutic potential. Cardiovasc Hematol Agents Med Chem 4(1):17–32

    CAS  PubMed  Google Scholar 

  • Head GA, Chan CK, Burke SL (1998) Relationship between imidazoline and alpha2-adrenoceptors involved in the sympatho-inhibitory actions of centrally acting antihypertensive agents. J Auton Nerv Syst 72(2–3):163–169

    CAS  PubMed  Google Scholar 

  • Hosseini AR, King PR, Louis WJ, Gundlach AL (1997) [3H]2- (2-Benzofuranyl)-2-imidazoline, a highly selective radioligand for imidazoline I2 receptor binding sites. Naunyn Schmiedeberg’s Arch Pharmacol 355:131–138

    CAS  Google Scholar 

  • Hudson AL, Chapleo CB, Lewis JW, Husbands S, Grivas K, Mallard NJ, Nutt DJ (1997) Identification of ligands selective for central I2 imidazoline binding sites. Neurochem Int 30:47–53

    CAS  PubMed  Google Scholar 

  • Hudson AL, Luscombe S, Gouch RE, Nutt DJ, Tyacke RJ (1999) Endogenous indoleamines demonstrate moderate affinity for I2 binding sites. Ann N Y Acad Sci 881:212–216

    CAS  PubMed  Google Scholar 

  • Jordan S, Jackson HC, Nutt DJ, Handley SL (1996) Discrimination stimulus produced by the imidazoline I2 site ligand, 2-BFI. J Psychopharmacol 10:273–278

    CAS  PubMed  Google Scholar 

  • Khan ZP, Ferguson CN, Jones RM (1999) Alpha-2 and imidazoline receptor agonists. Their pharmacology and therapeutic role. Anaesthesia 54(2):146–165

    CAS  PubMed  Google Scholar 

  • Lanier SM, Ivkovic B, Singh I, Neumeyer JL, Bakthavachalam V (1993) Visualization of multiple imidazoline/guanidinium-receptive sites. J Biol Chem 268:16047–16051

    CAS  PubMed  Google Scholar 

  • Li G, Regunathan S, Barrow CJ, Eshraghi J, Cooper R, Reis DJ (1994) Agmatine: an endogenous clonidine-displacing substance in the brain. Science 263:966–969

    CAS  PubMed  Google Scholar 

  • Lione LA, Nutt DJ, Hudson AL (1996) [3H]2-(2-benzofuranyl)- 2-imidazoline: a new selective high affinity radioligand for the study of rabbit brain imidazoline I2 receptors. Eur J Pharmacol 304:221–229

    CAS  PubMed  Google Scholar 

  • MacKinnon AC, Stewart M, Olverman HJ, Spedding M, Brown CM (1993) [3H]p-aminoclonidine and [3H]idazoxan label different populations of imidazoline sites on rat kidney. Eur J Pharmacol 232:79–87

    CAS  PubMed  Google Scholar 

  • MacKinnon AC, Redfern WS, Brown CM (1995) [3H]-RS- 45041-190: a selective high affinity ligand for I2 imidazoline receptors. Br J Pharmacol 116:1729–1736

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mc Pherson GA (1985) Analysis of radioligand binding experiments: a collection of computer programs for the IBM PC. J Pharmacol Methods 14:213–218

    CAS  Google Scholar 

  • Menargues A, Cedo M, Artiga O, Obach R, Garcia-Sevilla JA (1995) Effects of the I2 imidazoline receptor ligand LSL 60101 on various models of anorexia in rats. Ann N Y Acad Sci 763:494–496

    CAS  PubMed  Google Scholar 

  • Molderings GJ, Göthert M (1995) Inhibitory presynaptic imidazoline receptors on sympathetic nerves in the rabbit aorta differ from I1- and I2-imidazoline binding sites. Naunyn-Schmiedeberg’s Arch Pharmacol 351:507–516

    CAS  Google Scholar 

  • Molderings GJ, Hentrich F, Göthert M (1991) Pharmacological characterization of the imidazoline receptor which mediates inhibition of noradrenaline release in the rabbit pulmonary artery. Naunyn-Schmiedeberg’s Arch Pharmacol 344:630–638

    CAS  Google Scholar 

  • Morgan NG, Chan SL, Mourtada M, Monks LK, Ramsden CA (1999) Imidazolines and pancreatic hormone secretion. Ann N Y Acad Sci 881:217–228

    CAS  PubMed  Google Scholar 

  • Munk SA, Lai RK, Burke JE, Arasasingham PN, Kharlamb AB, Manlapaz CA, Padillo EU, Wijono MK, Hasson DW, Wheeler LA, Garst ME (1996) Synthesis and pharmacological evaluation of 2-endo-amino-3-exo-isopropylbicyclo[ 2.2.1]heptane: a potent imidazoline-1 receptor specific agent. J Med Chem 39:1193–1195

    CAS  PubMed  Google Scholar 

  • Munson PJ, Rodbard D (1980) LIGAND, a versatile computerized approach for characterization of ligand binding systems. Anal Biochem 107:220–239

    CAS  PubMed  Google Scholar 

  • Musgrave IF, Badoer E (2000) Harmane produces hypotension following microinjection into the RVLM: possible role of I(1)-imidazoline receptors. Br J Pharmacol 129(6):1057–1059

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mutolsky HJ, Ransnas LA (1987) Fitting curves for data using non-linear regression: a practical and non mathematical review. FASEB J 1:365–374

    Google Scholar 

  • Nikolic K, Agbaba D (2012) Imidazoline antihypertensive drugs: selective i(1) -imidazoline receptors activation. Cardiovasc Ther 30(4):209–216

    CAS  PubMed  Google Scholar 

  • Parker CA, Hudson AL, Nutt DJ, Dillon MP, Eglen RM, Chan SL, Morgan NG, Crosby J (1999) Extraction of active clonidine-displacing substance from bovine lung and comparison with clonidine-displacing substance extracted from other tissues. Eur J Pharmacol 378(2):213–221

    CAS  PubMed  Google Scholar 

  • Peterson GL (1977) A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal Biochem 83(2):346–56

    CAS  PubMed  Google Scholar 

  • Piletz JE, Zhu H, Chikkala DN (1996) Comparison of ligand binding affinities at human I1 imidazole binding sites and the high affinity state of α2 adrenoceptor subtypes. J Pharmacol Exp Ther 279:694–702

    CAS  PubMed  Google Scholar 

  • Prell GD, Martinelli GP, Holstein GR, Matulić-Adamić J, Watanabe KA, Chan SL, Morgan NG, Haxhiu MA, Ernsberger P (2004) Imidazoleacetic acid-ribotide: an endogenous ligand that stimulates imidazol(in)e receptors. Proc Natl Acad Sci U S A 101(37):13677–13682

    PubMed Central  CAS  PubMed  Google Scholar 

  • Raasch W, Schäfer U, Chun J, Dominiak P (2001) Biological significance of agmatine, an endogenous ligand at imidazoline binding sites. Br J Pharmacol 133(6):755–780

    PubMed Central  CAS  PubMed  Google Scholar 

  • Raasch W, Schäfer U, Qadri F, Dominiak P (2002) Agmatine, an endogenous ligand at imidazoline binding sites, does not antagonize the clonidine-mediated blood pressure reaction. Br J Pharmacol 135(3):663–672

    PubMed Central  CAS  PubMed  Google Scholar 

  • Reis DJ, Li G, Regunathan S (1995) Endogenous ligands of imidazoline receptors: classic and immunoreactive Clonidine displacing substance and agmatine. Ann N Y Acad Sci 763:295–313

    CAS  PubMed  Google Scholar 

  • Robinson ES, Anderson NJ, Crosby J, Nutt DJ, Hudson AL (2003) Endogenous beta-carbolines as clonidine-displacing substances. Ann N Y Acad Sci 1009:157–166

    CAS  PubMed  Google Scholar 

  • Szabo B (2002) Imidazoline antihypertensive drugs: a critical review on their mechanism of action. Pharmacol Ther 93(1):1–35

    CAS  PubMed  Google Scholar 

  • Szabo B, Bock C, Nordheim U, Niederhoffer N (1999) Mechanism of the sympathoinhibition produced by the clonidine-like drugs rilmenidine and moxonidine. Ann N Y Acad Sci 881:253–264

    CAS  PubMed  Google Scholar 

  • Tesson F, Prip-Buus C, Lemoine A, Pegorier JP, Parini A (1991) Subcellular distribution of imidazoline-guanidinium-receptive sites in human and rabbit liver. J Biol Chem 266:155–160

    CAS  PubMed  Google Scholar 

  • Tesson F, Limon-Boulez I, Urban P, Puype M, Vandekerckhove J, Coupry I, Pompon D, Parini A (1995) Localization of I2-imidazoline binding sites on monoamine oxidases. J Biol Chem 270(17):9856–9861

    CAS  PubMed  Google Scholar 

  • Wiest SA, Steinberg MI (1997) Binding of [3H]2-(2-benzofuranyl)- 2-imidazoline (BFI) to human brain: potentiation by tranylcypromine. Life Sci 60:605–615

    CAS  PubMed  Google Scholar 

β-Adrenoreceptor Binding

  • Abrahamsson T, Ek B, Nerme V (1988) The β 1- and β 2- adrenoceptor affinity of atenolol and metoprolol: a receptor-binding study performed with different ligands in tissues from the rat, the guinea pig and man. Biochem Pharmacol 37(2):203–8

    Google Scholar 

  • Ahlquist RP (1948) A study of the adrenotropic receptors. Am J Physiol 153(3):586–600

    Google Scholar 

  • Bristow MR, Anderson FL, Port JD, Skerl L, Hershberger RE, Larrabee P, O’Connell JB, Renlund DG, Volkman K, Murray J, Feldman AM (1991) Differences in beta-adrenergic neuroeffector mechanisms in ischemic versus idiopathic dilated cardiomyopathy. Circulation 84(3):1024–1039

    CAS  PubMed  Google Scholar 

  • Bristow MR, Ginsburg R, Minobe W, Cubicciotti RS, Sageman WS, Lurie K, Billingham ME, Harrison DC, Stinson EB (1982) Decreased catecholamine sensitivity and beta-adrenergic-receptor density in failing human hearts. N Engl J Med 307(4):205–211

    CAS  PubMed  Google Scholar 

  • Bristow MR, Ginsburg R, Umans V, Fowler M, Minobe W, Rasmussen R, Zera P, Menlove R, Shah P, Jamieson S, Stinson EB (1986) Beta 1- and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure. Circ Res 59(3):297–309

    CAS  PubMed  Google Scholar 

  • Bristow MR, Port JD, Hershberger RE, Gilbert EM, Feldman AM (1989) The beta-adrenergic receptor-adenylate cyclase complex as a target for therapeutic intervention in heart failure. Eur Heart J 10(Suppl B):45–54

    PubMed  Google Scholar 

  • Bristow MR, Hershberger RE, Port JD, Gilbert EM, Sandoval A, Rasmussen R, Cates AE, Feldman AM (1990) Beta-adrenergic pathways in nonfailing and failing human ventricular myocardium. Circulation 82(2 Suppl):I12–I25

    CAS  PubMed  Google Scholar 

  • Brodde OE (2008) Beta-1 and beta-2 adrenoceptor polymorphisms: functional importance, impact on cardiovascular diseases and drug responses. Pharmacol Ther 117(1):1–29

    CAS  PubMed  Google Scholar 

  • Brodde OE, Leineweber K (2005) Beta2-adrenoceptor gene polymorphisms. Pharmacogenet Genomics 15(5):267–275

    CAS  PubMed  Google Scholar 

  • Brodde OE, Bruck H, Leineweber K (2006) Cardiac adrenoceptors: physiological and pathophysiological relevance. J Pharmacol Sci 100(5):323–337

    CAS  PubMed  Google Scholar 

  • Buxton BF, Jones CR, Molenaar P, Summers RJ (1987) Characterization and autoradiographic localization of beta-adrenoceptor subtypes in human cardiac tissues. Br J Pharmacol 92(2):299–310

    PubMed Central  CAS  PubMed  Google Scholar 

  • Bylund DB, Snyder SH (1976) Beta adrenergic receptor binding in membrane preparations from mammalian brain. Mol Pharmacol 12(4):568–580

    CAS  PubMed  Google Scholar 

  • Calderone A, Bouvier M, Li K, Juneau C, de Champlain J, Rouleau JL (1991) Dysfunction of the beta- and alpha-adrenergic systems in a model of congestive heart failure. The pacing-overdrive dog. Circ Res 69(2):332–343

    CAS  PubMed  Google Scholar 

  • Cartagena G, Sapag-Hagar M, Jalil J, Tapia V, Guarda E, Foncea R, Corbalan R, Ebensperger R, Lavandero S (1993) Changes in beta-adrenergic receptors of rat heart and adipocytes during volume-overload induced cardiac hypertrophy. Int J Clin Pharmacol Ther Toxicol 31(4):198–203

    CAS  PubMed  Google Scholar 

  • Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Google Scholar 

  • Daly CJ, McGrath JC (2011) Previously unsuspected widespread cellular and tissue distribution of β-adrenoceptors and its relevance to drug action. Trends Pharmacol Sci 32(4):219–226

    CAS  PubMed  Google Scholar 

  • Emorine LJ, Marullo S, Briend-Sutren MM, Patey G, Tate K, Delavier-Klutchko C, Strosberg AD (1989) Molecular characterization of the human beta 3-adrenergic receptor. Science 245(4922):1118–1121

    Google Scholar 

  • Emorine LJ, Fève B, Pairault J, Briend-Sutren MM, Nahmias C, Marullo S, Delavier-Klutchko C, Strosberg DA (1992) The human beta 3-adrenergic receptor: relationship with atypical receptors. Am J Clin Nutr 55(1 Suppl):215S–218S

    CAS  PubMed  Google Scholar 

  • Ferguson SS (2001) Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 53(1):1–24

    CAS  PubMed  Google Scholar 

  • Fleisher JH, Pinnas JL (1985) In vitro studies on the relative potency of bronchodilator agents. Lung 163:161–171

    CAS  PubMed  Google Scholar 

  • Frielle T, Collins S, Daniel KW, Caron MG, Lefkowitz RJ, Kobilka BK (1987) Cloning of the cDNA for the human beta 1-adrenergic receptor. Proc Natl Acad Sci U S A 84(22):7920–7924

    Google Scholar 

  • Gauthier C, Langin D, Balligand JL (2000) β3-adrenoceptors in the cardiovascular system. Trends Pharmacol Sci 21:426–431

    CAS  PubMed  Google Scholar 

  • Gauthier C, Tavernier G, Charpentier F, Langin D, Le Marec H (1996) Functional beta3-adrenoceptor in the human heart. J Clin Invest 98(2):556–562

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gauthier C, Rozec B, Manoury B, Balligand JL (2011) Beta-3 adrenoceptors as new therapeutic targets for cardiovascular pathologies. Curr Heart Fail Rep 8(3):184–192

    CAS  PubMed  Google Scholar 

  • Granneman JG (2001) The putative beta4-adrenergic receptor is a novel state of the beta1-adrenergic receptor. Am J Physiol Endocrinol Metab 280(2):E199–E202

    CAS  PubMed  Google Scholar 

  • Hasenfuss G, Mulieri LA, Allen PD, Just H, Alpert NR (1996) Influence of isoproterenol and ouabain on excitation-contraction coupling, cross-bridge function, and energetics in failing human myocardium. Circulation 94(12):3155–3160

    CAS  PubMed  Google Scholar 

  • Hedberg A, Minneman KP, Molinoff PB (1980) Differential distribution of beta-1 and beta-2 adrenergic receptors in cat and guinea-pig heart. J Pharmacol Exp Ther 212:503–508

    CAS  PubMed  Google Scholar 

  • Kaumann AJ (1997) Four beta-adrenoceptor subtypes in the mammalian heart. Trends Pharmacol Sci 18(3):70–76

    CAS  PubMed  Google Scholar 

  • Kaumann AJ, Preitner F, Sarsero D (1998) Molenaar P, Revelli JP, Giacobino JP (−)CGP 12177 causes cardiostimulation and binds to cardiac putative β4-adrenoceptors in both wild-type and β3-adrenoceptor knockout mice. Mol Pharmacol 53:670–675

    CAS  PubMed  Google Scholar 

  • Kaumann AJ, Engelhardt S, Hein L, Molenaar P, Lohse M (2001) Abolition of (−)-CGP 12177-evoked cardiostimulation in double beta1/beta2-adrenoceptor knockout mice. Obligatory role of beta1-adrenoceptors for putative beta4-adrenoceptor pharmacology. Naunyn Schmiedebergs Arch Pharmacol 363(1):87–93

    CAS  PubMed  Google Scholar 

  • Kirstein SL, Insel PA (2004) Autonomic nervous system pharmacogenomics: a progress report. Pharmacol Rev 56(1):31–52

    CAS  PubMed  Google Scholar 

  • Kobilka BK, Dixon RA, Frielle T, Dohlman HG, Bolanowski MA, Sigal IS, Yang-Feng TL, Francke U, Caron MG, Lefkowitz RJ (1987) cDNA for the human beta 2-adrenergic receptor: a protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proc Natl Acad Sci U S A A84(1):46–50

    Google Scholar 

  • Konkar AA, Zhai Y, Granneman JG (2000) Beta1-adrenergic receptors mediate beta3-adrenergic-independent effects of CGP 12177 in brown adipose tissue. Mol Pharmacol 57(2):252–258

    CAS  PubMed  Google Scholar 

  • Lands AM, Arnold A, McAuliff JP, Luduena FP, Brown TG Jr (1967) Differentiation of receptor systems activated by sympathomimetic amines. Nature 214(5088):597–598

    CAS  PubMed  Google Scholar 

  • Lefkowitz RJ, Williams LT (1977) Catecholamine binding to the beta-adrenergic receptor. Proc Natl Acad Sci U S A 74(2):515–519

    PubMed Central  CAS  PubMed  Google Scholar 

  • Leineweber K, Büscher R, Bruck H, Brodde OE (2004) Beta-adrenoceptor polymorphisms. Naunyn Schmiedebergs Arch Pharmacol 369(1):1–22

    CAS  PubMed  Google Scholar 

  • Lohse MJ, Engelhardt S, Eschenhagen T (2003) What is the role of beta-adrenergic signaling in heart failure? Circ Res 93(10):896–906

    CAS  PubMed  Google Scholar 

  • Machida CA, Bunzow JR, Searles RP, Van Tol H, Tester B, Neve KA, Teal P, Nipper V, Civelli O (1990) Molecular cloning and expression of the rat beta 1-adrenergic receptor gene. J Biol Chem 265(22):12960–12965

    CAS  PubMed  Google Scholar 

  • Minneman KP, Hegstrand LR, Molinoff PB (1979) The pharmacological specificity of beta-1 and beta-2 adrenergic receptors in rat heart and lung in vitro. Mol Pharmacol 16:21–33

    CAS  PubMed  Google Scholar 

  • Mukherjee C, Caron MG, Coverstone M, Lefkowitz RJ (1975) Identification of adenylate cyclase-coupled β-adrenergic receptors in frog erythrocytes with (−)-3H-Alprenolol. J Biol Chem 250:4869–4876

    Google Scholar 

  • Pelá G, Missale C, Raddino R, Condorelli E, Spano PF, Visioli O (1990) Beta 1- and beta 2-receptors are differentially desensitized in an experimental model of heart failure. J Cardiovasc Pharmacol 16(5):839–846

    PubMed  Google Scholar 

  • Pérez-Schindler J, Philp A, Hernandez-Cascales J (2013) Pathophysiological relevance of the cardiac β2-adrenergic receptor and its potential as a therapeutic target to improve cardiac function. Eur J Pharmacol 698(1–3):39–47

    PubMed  Google Scholar 

  • Philipp M, Hein L (2004) Adrenergic receptor knockout mice: distinct functions of 9 receptor subtypes. Pharmacol Ther 101(1):65–74

    Google Scholar 

  • Rajagopal S, Rajagopal K, Lefkowitz RJ (2010) Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 9(5):373–386

    PubMed Central  CAS  PubMed  Google Scholar 

  • Rockman HA, Koch WJ, Lefkowitz RJ (2002) Seven-transmembrane-spanning receptors and heart function. Nature 415(6868):206–212

    CAS  PubMed  Google Scholar 

  • Rugg EL, Barnett DB, Nahorski SR (1978) Coexistence of beta1 and beta2 adrenoceptors in mammalian lung: evidence from direct binding studies. Mol Pharmacol 14(6):996–1005

    CAS  PubMed  Google Scholar 

  • Shore SA, Moore PE (2003) Regulation of beta-adrenergic responses in airway smooth muscle. Respir Physiol Neurobiol 137(2–3):179–195

    CAS  PubMed  Google Scholar 

  • Small KM, McGraw DW, Liggett SB (2003) Pharmacology and physiology of human adrenergic receptor polymorphisms. Annu Rev Pharmacol Toxicol 43:381–411

    CAS  PubMed  Google Scholar 

  • Steinberg SF (1999) The molecular basis for distinct beta-adrenergic receptor subtype actions in cardiomyocytes. Circ Res 85(11):1101–1111

    CAS  PubMed  Google Scholar 

  • Steinfath M, Geertz B, Schmitz W, Scholz H, Haverich A, Breil I, Hanrath P, Reupcke C, Sigmund M, Lo HB (1991) Distinct down-regulation of cardiac beta 1- and beta 2-adrenoceptors in different human heart diseases. Naunyn Schmiedebergs Arch Pharmacol 343(2):217–220

    CAS  PubMed  Google Scholar 

  • Strosberg AD (1998) Structure and function of the beta 3 adrenoreceptor. Adv Pharmacol 42:511–513

    CAS  PubMed  Google Scholar 

  • Tate KM, Briend-Sutren MM, Emorine LJ, Delavier-Klutchko C, Marullo S, Strosberg AD (1991) Expression of three human beta-adrenergic-receptor subtypes in transfected Chinese hamster ovary cells. Eur J Biochem 196(2):357–361

    CAS  PubMed  Google Scholar 

  • Teerlink JR, Pfeffer JM, Pfeffer MA (1994) Progressive ventricular remodeling in response to diffuse isoproterenol-induced myocardial necrosis in rats. Circ Res 75(1):105–113

    CAS  PubMed  Google Scholar 

  • U’Prichard DC, Bylund DB, Snyder SH (1978) (±)-3H-Epinephrine and (−)-3H-dihydroalprenolol binding to β1 and β2 noradrenergic receptors in brain, heart and lung membranes. J Biol Chem 253:5090–5102

    Google Scholar 

  • Vasudevan NT, Mohan ML, Goswami SK, Naga Prasad SV (2011) Regulation of β-adrenergic receptor function: an emphasis on receptor resensitization. Cell Cycle 10(21):3684–3691

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wachter SB, Gilbert EM (2012) Beta-adrenergic receptors, from their discovery and characterization through their manipulation to beneficial clinical application. Cardiology 122(2):104–112

    CAS  PubMed  Google Scholar 

  • Waitling KJ (2006) The Sigma RBI handbook of receptor classification and signal transduction, 5th edn. Sigma-Aldrich, St Louis, pp 92–93

    Google Scholar 

  • Wang X, Dhalla NS (2000) Modification of beta-adrenoceptor signal transduction pathway by genetic manipulation and heart failure. Mol Cell Biochem 214(1–2):131–155

    CAS  PubMed  Google Scholar 

  • Weiland GA, Minneman KP, Molinoff PB (1980) Thermodynamics of agonist and antagonist interactions with mammalian beta-adrenergic receptors. Mol Pharmacol 18(3):341–347

    CAS  PubMed  Google Scholar 

  • White M, Roden R, Minobe W, Khan MF, Larrabee P, Wollmering M, Port JD, Anderson F, Campbell D, Feldman AM, Bristow MR (1994) Age-related changes in beta-adrenergic neuroeffector systems in the human heart. Circulation 90(3):1225–1238

    CAS  PubMed  Google Scholar 

  • Wiemer G, Wellstein A, Palm D, Hattingberg HM, Brockmeier D (1982) Properties of agonist binding at the β- adrenoceptor of the rat reticulocyte. Naunyn-Schmiedeberg’s Arch Pharmacol 321:11–19

    CAS  Google Scholar 

  • Woo AY, Xiao RP (2012) β-Adrenergic receptor subtype signaling in heart: from bench to bedside. Acta Pharmacol Sin 33(3):335–341

    PubMed Central  CAS  PubMed  Google Scholar 

  • Xiao RP, Lakatta EG (1993) β1-adrenoceptor stimulation and β2-adrenoceptor stimulation differ in their effect on contraction, cytosolic Ca2+, and Ca2+ current in single rat ventricular cells. Circ Res 73:286–300

    CAS  PubMed  Google Scholar 

β 1-Adrenoreceptor Binding

  • Dooley DJ, Bittiger H, Reymann NC (1986) CGP 20712 A: a useful tool for quantitating β1 and β2 adrenoceptors. Eur J Pharmacol 130:137–139

    Google Scholar 

  • Wolfe BB, Minneman KP, Molinoff PB (1982) Selective increases in the density of cerebellar β1-adrenergic receptors. Brain Res 234:474–479

    CAS  PubMed  Google Scholar 

β 2-Adrenoreceptor Binding

  • Alexander S, Peters J, Mathie A, MacKenzie G, Smith A (2001) Nomenclature supplement. Trends Pharmacol Sci (12th Ed.) pp. 118–125

    Google Scholar 

  • Ariens EJ, Simonis AM (1983) Physiological and pharmacological aspects of adrenergic receptor classification. Biochem Pharmacol 32:1539–1545

    CAS  PubMed  Google Scholar 

  • Chen C, Okayama H (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7:2745–2752

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cheng YC, Prusoff WH (1973) Relationship between the inhibition constant (Ki) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. Biochem Pharmacol 22:3099–3108

    Google Scholar 

  • Collis MG (1983) Evidence for an A1 adenosine receptor in the guinea pig atrium. Br J Pharmacol 78:207–212

    PubMed Central  CAS  PubMed  Google Scholar 

  • Deighton NM, Motomura S, Bals S, Zerkowski HR, Brodde OE (1992) Characterization of the beta adrenoceptor subtype( s) mediating the positive inotropic effects of epinine, dopamine, dobutamine, denopamine and xamoterol in isolated human right atrium. J Pharmacol Exp Ther 262:532–538

    CAS  PubMed  Google Scholar 

  • Dooley DJ, Bittiger H, Reymann NC (1986) CGP 20712: a useful tool for quantitating β1- and β2-adrenoceptors. Eur J Pharmacol 130:137–139

    Google Scholar 

  • Emorine LJ, Marullo S, Briend-Sutren MM, Patey G, Tate K, Delavier-Klutchko C, Strosberg AD (1989) Molecular characterization of the human beta 3-adrenergic receptor. Science 245(4922):1118–1121

    Google Scholar 

  • Freund S, Ungerer M, Lohse MJ (1994) A1 adenosine receptors expressed in CHO-cells couple to adenylyl cyclase and phospholipase C. Naunyn-Schmiedebergs Arch Pharmacol 350:49–56

    CAS  PubMed  Google Scholar 

  • Frielle T, Collins S, Daniel KW, Caron MG, Lefkowitz RJ, Kobilka BK (1987) Cloning of the cDNA for the human beta β1-adrenergic receptor. Proc Natl Acad Sci U S A 84(22):7920–7924

    Google Scholar 

  • Hoffmann C, Leitz MR, Ober-dorf-Maass S, Lohse MJ, Klotz KN (2004) Comparative pharmacology of human β- adrenergic receptor subtypes – characterization of stably transfected receptors in CHO cells. Naunyn Schmiedbergs Arch Pharmacol 369:151–159

    CAS  Google Scholar 

  • Jakobs KH, Saur W, Schultz G (1976) Reduction of adenylyl cyclase activity in lysates of human platelets by the alpha-adrenergic component of epinephrine. J Cyclic Nucleotide Res 2:381–392

    CAS  PubMed  Google Scholar 

  • Klotz K-N, Cristalli G, Grifantini M, Vittori S, Lohse MJ (1985) Photoaffinity labeling of A1-adenosine receptors. J Biol Chem 260:14659–14664

    CAS  PubMed  Google Scholar 

  • Klotz K-N, Hessling J, Hegler J, Owman C, Kull B, Fredholm BB, Lohse MJ (1998) Comparative pharmacology of human adenosine receptor subtypes – characterization of stably transfected receptors in CHO cells. Naunyn-Schmiedebergs Arch Pharmacol 357:1–9

    CAS  PubMed  Google Scholar 

  • Lefkowitz RJ, Stadel JM, Caron MG (1983) Adenylate cyclase coupled beta-adrenergic receptors: structure and mechanisms of activation and desensitization. Annu Rev Biochem 52:159–186

    CAS  PubMed  Google Scholar 

  • McConnell HM, Rice P, Wada GH, Owicki JC, Parce JW (1991) The microphysiometer biosensor. Curr Opin Struct Biol 1:647–652

    CAS  Google Scholar 

  • McConnell HM, Owicki JC, Parce JW, Miller DL, Baxter GT, Wada HG, Pitchford S (1992) The cytosensor microphysiometer: biological applications of silicon technology. Science 257:1906–1912

    CAS  PubMed  Google Scholar 

  • McCrea KE, Hill SJ (1993) Salmeterol, a long acting β- adrenoceptor agonist mediating cyclic AMP accumulation in a neuronal cell line. Br J Pharmacol 110:619–626

    PubMed Central  CAS  PubMed  Google Scholar 

  • Minneman KP, Wolfe BB, Pittman RN, Molinoff PB (1983) β- adrenergic receptor subtypes in rat brain. In: Segawa T (ed) Molecular Pharmacology of Neurotransmitter Receptors. Raven Press, New York

    Google Scholar 

  • Mukherjee C, Caron MG, Coverstone M, Lefkowitz RJ (1975) Identification of adenylate cyclase-coupled β-adrenergic receptors in frog erythrocytes with (−)-3H-Alprenolol. J Biol Chem 250:4869–4876

    Google Scholar 

  • Nahorski SR (1981) Identification and significance of betaadrenoceptor subtypes. TIPS 1981:95–98

    Google Scholar 

  • Nathanson JA (1985) Differential inhibition of beta adrenergic receptors in human and rat ciliary process and heart. J Pharmacol Exp Ther 232:119–126

    CAS  PubMed  Google Scholar 

  • Niclauss N, Michel-Reher MB, Alewijnse AE, Michel MC (2006) Comparison of three radioligands for the human b-adrenoceptor types. Naunyn-Schmiedebergs Arch Pharmacol 374:99–105

    CAS  PubMed  Google Scholar 

  • Owicki JC, Parce JW (1992) Biosensors based on the energy metabolism of living cells: the physical chemistry and cell biology of extracellular acidification. Biosens Bioelectron 7:255–272

    CAS  PubMed  Google Scholar 

  • Schofield PR, Rhee LM, Peralta EG (1987) Primary structure of the human beta-adrenergic receptor gene. Nucleic Acids Res 15:3636

    PubMed Central  CAS  PubMed  Google Scholar 

  • U’Prichard DC, Bylund DB, Snyder SH (1978) (±)-3H-Epinephrine and (−)-3H-dihydroalprenolol binding to β1 and β2 noradrenergic receptors in brain, heart and lung membranes. J Biol Chem 253:5090–5102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Gralinski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Gralinski, M., Neves, L.A.A., Tiniakova, O. (2016). α- and β-Adrenoreceptor Binding. In: Hock, F. (eds) Drug Discovery and Evaluation: Pharmacological Assays. Springer, Cham. https://doi.org/10.1007/978-3-319-05392-9_1

Download citation

Publish with us

Policies and ethics