Skip to main content

Porous Silicon for Microdevices and Microsystems

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Porous Silicon
  • 117 Accesses

Abstract

An updated literature survey is provided of the various uses of both macroporous and mesoporous silicon in individual microdevices and complex microsystems. The material has been used (a) as a silicon wafer processing tool wherein it is sacrificial (b) in a passive role where it can provide thermal or electrical isolation and (c) in an active role where it can perform a number of diverse functions. Examples of active functions available for microsystems include culturing cells, sensing, delivering drugs, providing sources of energy for microactuators, or having a catalytic role in microelectrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Barillaro G, Strambini LM (2008) An integrated CMOS sensing chip for NO2 detection. Sensors Actuators B Chem 134:585–590

    Article  Google Scholar 

  • Barillaro G, Bruschi P, Pieri F, Strambini LM (2007) CMOS-compatible fabrication of porous silicon gas sensors and their readout electronics on the same chip. Phys Status Solidi A 204(5):1423–1428

    Article  Google Scholar 

  • Barillaro G, Bruschi P, Lazzerini GM, Strambini LM (2010) Validation of the compatibility between a porous silicon-based gas sensor technology and standard microelectronic process. IEEE Sensors J 10(4):893–899

    Article  Google Scholar 

  • Barillaro G, Merlo S, Surdo S, Strambini LM, Carpignano F (2012) Integrated optofluidic microsystem based on vertical high-order one-dimensional silicon photonic crystals. Microfluid Nanofluid 12:545–552

    Article  Google Scholar 

  • Benecke W, Splinter A (2001) MEMS applications of porous silicon. In: Chiao JC (ed) Device and process technologies for MEMS and microelectronics II. Proc SPIE, vol 4592, pp 76–87

    Google Scholar 

  • Bischoff T, Miller G, Welser W, Koch F (1997) Frontside micromachining using porous-silicon sacrificial-layer technologies. Sens Actuators A 60:228–234

    Article  Google Scholar 

  • Bomchil G, Halimaoui A, Herino R (1988) Porous silicon: the material and its applications to SO1 technologies. Microelectron Eng 8:293–310

    Article  Google Scholar 

  • Caliò A, Cassinese A, Casalino M, Rea I, Barra M, Chiarella F, De Stefano L (2015) Hybrid organic–inorganic porous semiconductor transducer for multi-parameters sensing. J R Soc Interface 12(108):20141268

    Article  Google Scholar 

  • Camara EHM, Pijolat C, Courbat J et al. (2007) Microfluidic channels in porous silicon filled with a carbon absorbent for gas pre-concentration, IEEE Transducers ’07 & Eurosensors Xxi. Digest Tech Pap, vols 1 and 2, pp U128–U129

    Google Scholar 

  • Chen HW, Wortmann A, Zhang WH, Zenobi R (2007) Neutral desorption sampling of living objects for rapid analysis by extractive electrospray ionization mass spectrometry. Angew Chem Int Ed Engl 46:7591

    Google Scholar 

  • Chiappini C, De Rosa E, Martinez JO, Liu X, Steele J, Stevens MM, Tasciotti E (2015) Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nat Mater 14(5):532–539

    Article  Google Scholar 

  • D’arrigo G, Spinella C, Arena G, Lorenti S (2003) Fabrication of miniaturized Si-based electrocatalytic membrane. Mater Eng C 25(1–2):13–18

    Article  Google Scholar 

  • Dang Z, Banas A, Azimi S, Song J, Breese M, Yao Y (2013) Silicon and porous silicon mid infrared photonic crystals. Appl Phys A Mater Sci Process 112(3):517–523

    Article  Google Scholar 

  • Dantas MOS, Galeazzo E, Peres HEM et al (2008) Silicon field-emission devices fabricated using the hydrogen implantation-porous silicon (HI-PS) micromachining technique. J Microelectromech Syst 17(5):1263–1269

    Article  Google Scholar 

  • Dardano P, Caliò A, Politi J, Rea I, Rendina I, De Stefano L (2016) Optically monitored drug delivery patch based on porous silicon and polymer microneedles. Biomed Opt Express 7(5):1645–1655

    Article  Google Scholar 

  • De Stefano L, Rendina I, Moretti L, Rossi AM (2004) Time-resolved sensing of chemical species in porous silicon optical microcavity. Sensors Actuators B Chem 100:168–172

    Article  Google Scholar 

  • De Stefano L, Malecki K, Della Corte FG, Moretti L, Rea I, Rotiroti L, Rendina I (2006a) A microsystem based on porous silicon-glass anodic bonding for gas and liquid optical sensing. Sensors 6:680–687

    Article  Google Scholar 

  • De Stefano L, Malecki K, Della Corte FG, Moretti L, Rotiroti L, Rendina I (2006b) Integrated silicon-glass opto-chemical sensors for lab-on-chip applications. Sensors Actuators B Chem 114:625–630

    Article  Google Scholar 

  • De Stefano L, Rotiroti L, Rea I, Rendina I, Moretti L, Di Francia G, Massera E, Arcari P, Lamberti A, Sangez C (2006c) Porous silicon optical biochip. J Opt A Pure Appl Opt 8:S540–S544

    Article  Google Scholar 

  • De Stefano L, Rotiroti L, Rea I, Rendina I, Arcari P, Lamberti A, Sanges C (2007a) DNA optical detection based on porous silicon technology: from biosensors to biochips. Sensors 7:214–221

    Article  Google Scholar 

  • De Stefano L, Rea I, Rotiroti L, Rendina I, Fragomeni L, Della Corte FG (2007b) An integrated hybrid optical device for sensing applications. Phys Status Solidi C 4(6):1946–1950

    Article  Google Scholar 

  • De Stefano L, Rea I, Moretti L, Della Corte FG, Rotiroti L, Alfieri D, Rendina I (2007c) An integrated pressure-driven microsystem based on porous silicon for optical monitoring of gaseous and liquid substances. Phys Status Solidi A 204(5):1459–1463

    Article  Google Scholar 

  • De Stefano L, Rea I, Rotiroti L, Iodice M, Rendina I (2007d) Optical microsystems based on a nanomaterial technology. J Phys Condens Matter 19:395008

    Article  Google Scholar 

  • De Stefano L, Rotiroti L, Rendina I, Rossi AM, Rossi M, D’Auria S (2007e) Biochips at work: porous silicon microbiosensor for proteomic diagnostic. J Phys Condens Matter 19:395007

    Article  Google Scholar 

  • Ekstrom S, Onnerfjord P, Bengtsson M et al (2000) A microsystem platform interfacing MALDI-TOF MS for high speed automated protein identification. In: Vanden Berg A, Bergveld P, Olthuis W (eds) Micro total analysis systems 2000, proceedings. Kluwer, Dordrecht, pp 455–458

    Chapter  Google Scholar 

  • Friedberger A, Kreisl P, Muller G et al (2001) A versatile and modularizable micromachining process for the fabrication of thermal microsensors and microactuators. J Micromech Microeng 11(6):623–629

    Article  Google Scholar 

  • Gad-el-Hak M (2010) MEMS: design and fabrication. CRC Press, Boca Raton

    Google Scholar 

  • Hirota J, Kiuchi A, Koshida N (2005) Phase array operation of nanocrystalline porous silicon ultrasonic emitters. Phys Status Solidi C 2(9):3298–3302

    Article  Google Scholar 

  • Hirschman KD, Tsybeskov L, Duttagupta SP, Fauchet PM (1996) Silicon-based visible light-emitting devices integrated into microelectronic circuits. Nature 384:338–341

    Article  Google Scholar 

  • Holke AD, Pilchowski J, Henderson HT et al. (1998) Coherent macro porous silicon as a wick structure in an integrated microfluidic two-phase cooling system. In: Frazier AB, Ahn CH (eds) Proc SPIE, vol 3515, pp 154–162

    Google Scholar 

  • Kalinowski T, Rittersma ZM, Benecke W, Binder J (2000) An advanced micromachined fermentation monitoring device. Sensors Actuators B Chem 68:281–285

    Article  Google Scholar 

  • Kronast W, Muller B, Siedel W et al (2001) Single-chip condenser microphone using porous silicon as sacrificial layer for the air gap. Sens Actuators A 87(3):188–193

    Article  Google Scholar 

  • Lammel G, Renaud P (2000) Free-standing, mobile 3D porous silicon microstructures. Sens Actuators A 85(1–3):356–360

    Article  Google Scholar 

  • Lammel G, Schweizer S, Schiesser S et al (2002) Tunable optical filter of porous silicon as key component for a MEMS spectrometer. J Microelectromech Syst 11(6):815–828

    Article  Google Scholar 

  • Lang W, Steinera P, Richter A, Marusczyk K, Weimannb G, Sandmaier H (1994) Application of porous silicon as a sacrificial layer. Sens Actuators A 43:239–242

    Article  Google Scholar 

  • Lang W, Steiner P, Sandmaier H (1995) Porous silicon: a novel material for microsystems. Sens Actuators A 51(1):31–36

    Article  Google Scholar 

  • Lazaruk SK, Dolbik AV, Labunov VA et al (2007) Combustion and explosion of nanostructured silicon in microsystem devices. Semiconductors 41(9):1113–1116

    Article  Google Scholar 

  • Lee CS, Lee JD, Han CH (2000) A new wide-dimensional freestanding microstructure fabrication technology using laterally formed porous silicon as a sacrificial layer. Sens Actuators A 84(1–2):181–185

    Article  Google Scholar 

  • Liu Z, Ding Y, Liu L, Li Z (2003) Fabrication planar coil on oxide membrane hollowed with porous silicon as sacrificial layer. Sens Actuators A 108:112–116

    Article  Google Scholar 

  • Lysenko V, Perichon S, Remaki B, Barbier D (2002) Thermal isolation in microsystems with porous silicon. Sens Actuators A 99:13–24

    Article  Google Scholar 

  • McInnes SJ, Szili EJ, Al-Bataineh SA, Vasani RB, Xu J, Alf ME, Gleason KK, Short RD, Voelcker NH (2015) Fabrication and characterization of a porous silicon drug delivery system with an initiated chemical vapor deposition temperature-responsive coating. Langmuir 32(1):301–308

    Article  Google Scholar 

  • Mery E, Alekseev S, Portet-Koltalo F, Morin C, Barbier D, Zaitesev V, Desbene L (2009) Porous silicon based microdevice or reversed phase liquid chromatography. Phys Status Solidi C 6(7):1777–1781

    Article  Google Scholar 

  • Mescheder U (2004) Porous silicon: technology and applications for micromachining and MEMS. In: Yurish SY, Gomes MTS (eds) Smart sensors and MEMS, Nato science series, series II: mathematics, physics and chemistry, vol 181. Kluwer, Dordrecht, pp 273–288

    Chapter  Google Scholar 

  • Misra SCK, Bhattacharya R, Angelucci R (2001) Integrated polymer thin film macroporous silicon microsystems. J Ind Inst Sci 81:563–567

    Google Scholar 

  • Mondal B, Basu PK, Reddy BT et al. (2009) Oxidized macro porous silicon layer as an effective material for thermal insulation in thermal effect microsystems. In: Chakrabarti P, Jit S, Pandey A (eds) International conference on emerging trends in electronic and photonic devices and systems, Lyon, pp 202–206

    Google Scholar 

  • Mondal D, Pal D, RoyChaudhuri C (2015) Real-time sensing of epithelial cell-cell and cell-substrate interactions by impedance spectroscopy on porous substrates. J Appl Phys 118(4):044701

    Article  Google Scholar 

  • Nagayama G, Ando R, Muramatsu K et al. (2008) Fabrication of macroporous on no-mask silicon substrate for application to microsystems. In: Proceedings of MicroNano 2008-2nd international conference on integration and commercialization of micro and nanosystems, Tarragona, Catalunya, pp 707–708

    Google Scholar 

  • Ning J, Liu ZL, Liu HZ et al. (2004) A silicon capacitive microphone based on oxidized porous silicon sacrificial technology. In: Huang R, Yu M, Liou JJ et al. (eds) 7th international conference on solid-state and integrated circuits technology, Beijing, vols 1–3, pp 1872–1875

    Google Scholar 

  • Olivares J, Clement M, Gonzalez-Castilla S et al (2010) Porous silicon oxide sacrificial layers deposited by pulsed-direct current magnetron sputtering for microelectromechanical systems. Thin Solid Films 518(18):5128–5133

    Article  Google Scholar 

  • Perichon S, Lysenko V, Remaki B, Barbier D (2001) Porous silicon in microsystems: thermal isolation applications, Solid State Phenomena, (Vols. 80–81):417–428

    Google Scholar 

  • Politi J, Dardano P, Iodice M, Rea I, De Stefano L (2015) Optical characterization of heavy metal-binding proteins bioconjugation on porous silicon devices. In Sensors (pp. 53–58). Springer International Publishing, Berlin

    Google Scholar 

  • Rajaraman S, Henderson HT (2005) A unique fabrication approach for microneedles using coherent porous silicon technology. Sensors Actuators B Chem 105(2):443–448

    Article  Google Scholar 

  • Rajta I, Szilasi SZ, Fuerjes P et al (2009) Si micro-turbine by proton beam writing and porous silicon micromachining. Nucl Inst Meth Phys Res B-Beam Interac Mater Atoms 267(12–13):2292–2295

    Article  Google Scholar 

  • Rea I, Lamberti A, Rendina I, Coppola G, Gioffrè M, Iodice M, Casalino M, De Tommasi E, De Stefano L (2010) Fabrication and characterization of a porous silicon based microarray for label-free optical monitoring of biomolecular interactions. J Appl Phys 107:014513

    Article  Google Scholar 

  • Rea I, Orabona E, Lamberti A, Rendina I, De Stefano L (2011) A microfluidics assisted porous silicon array for optical label-free biochemical sensing. Biomicrofluidics 5:034120

    Article  Google Scholar 

  • Rendina I, Rea I, Rotiroti L, De Stefano L (2007) Porous silicon based optical biosensors and biochips. Phys E 38(1–2):188–192

    Article  Google Scholar 

  • Rittersma ZM, Splinter A, Bodecker A, Benecke W (2000) A novel surface-micromachined capacitive porous silicon humidity sensor. Sensors Actuators B Chem 68:210–217

    Article  Google Scholar 

  • Robbiano V, Di Stasio F, Surdo S, Mian S, Barillaro G, Cacialli F (2015) Hybrid-organic photonic structures for light emission modification. In: Organic and hybrid photonic crystals. Springer International Publishing, Berlin, pp 339–358

    Google Scholar 

  • Sainato M, Strambini LM, Rella S, Mazzotta E, Barillaro G (2015) Sub-parts per million NO2 chemi-transistor sensors based on composite porous silicon/gold nanostructures prepared by metal-assisted etching. ACS Appl Mater Interfaces 7(13):7136–7145

    Article  Google Scholar 

  • Sim J-H, Cho C-S, Kim J-S, Lee J-H, Lee J-H (1998) Eight beam piezoresistive accelerometer fabricated by using a selective porous silicon etching method. Sens Actuators A 66:273–278

    Article  Google Scholar 

  • Steiner P, Lang W (1995) Micromachining applications of porous silicon. Thin Solid Films 255:52–58

    Article  Google Scholar 

  • Stolyarova S, Cherian S, Raiteri R, Zeravik J, Skladal P, Nemirovsky Y (2008) Composite porous silicon-crystalline silicon cantilevers for enhanced biosensing. Sensors Actuators B Chem 131:509–515

    Article  Google Scholar 

  • Strambini LM, Longo A, Diligenti A, Barillaro G (2012) A minimally invasive microchip for transdermal injection/sampling applications. Lab Chip 12:3370–3379

    Article  Google Scholar 

  • Surdo S, Merlo S, Carpignano F, Strambini LM, Trono C, Giannetti A, Baldini F, Barillaro G (2012) Optofluidic microsystems with integrated vertical one-dimensional photonic crystals for chemical analysis. Lab Chip 12:4403–4415

    Article  Google Scholar 

  • Torres N, Duch M, Santander J et al (2009a) Porous Silicon Membrane for Micro Fuel Cell Application J. New Mater Electrochem Syst 12(2–3):93–96

    Google Scholar 

  • Torres N, Duch M, Santander J et al (2009b) Si micro-turbine by proton beam writing and porous silicon micromachining. Nucl Instr Meth Phys Res Sect B-Beam Interact Mater Atoms 267(12–13):2292–2295

    Google Scholar 

  • Valera E, Duch M, Rodriguez A et al. (2005) Microporous silicon for CMOS compatible MST. In: Proceedings of 2005 Spanish conference on electron devices, Clear Water Bay, Kowloon, pp 481–483

    Google Scholar 

  • van der Maaden K, Luttge R, Vos PJ, Bouwstra J, Kersten G, Ploemen I (2015) Microneedle-based drug and vaccine delivery via nanoporous microneedle arrays. Drug Deliv Transl Res 5(4):397–406

    Article  Google Scholar 

  • Vitanov R, Goranova E, Stavrov V et al (2009) Fabrication of buried contact silicon solar cells using porous silicon. Sol Energy Mater Sol Cells 93(3):297–300

    Article  Google Scholar 

  • Wallner JZ, Bergstrom PL (2007) A porous silicon based particle filter for microsystem. Phys Status Solidi A 5:1469–1473

    Article  Google Scholar 

  • Weisse JM, Lee CH, Kim DR, Cai L, Rao PM, Zhang X (2013) Electroassisted transfer of vertical silicon wire arrays using a sacrificial porous silicon layer. Nano Lett 13:4362–4368

    Article  Google Scholar 

  • Xia, Y; Zheng, S-Y (2015) A microfluidic device of biodegradable porous silicon nanowires for size based capturing and releasing viruses. In: 2015 transducers-2015 18th international conference on solid-state sensors, Actuators and Microsystems (TRANSDUCERS). IEEE, pp 444–447

    Google Scholar 

  • Xing C, Da-Fu C, Chang-Chun L, Hui L (2007) Fabrication of DNA purification microchip integrated with mesoporous matrix based on MEMS technology. Microsyst Technol 14:51–57

    Article  Google Scholar 

  • Yu Z, Zheng D, Zhang K, Yang T, Chen Y, Li X (2016) Optimally catalyzed porous silicon electrode of self breathing micro fuel cells. Microsyst Technol. doi:10.1007/s00542-016-3122

    Google Scholar 

  • Zellers ET et al. (2007) An integrated micro-analytical system for complex vapor mixtures. In: IEEE proceedings of TRANSDUCERS & EUROSENSORS’07, Varanasi, pp 1491–1496

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca De Stefano .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

De Stefano, L., Rea, I. (2016). Porous Silicon for Microdevices and Microsystems. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-04508-5_81-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04508-5_81-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04508-5

  • Online ISBN: 978-3-319-04508-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Porous Silicon for Microdevices and Microsystems
    Published:
    26 December 2016

    DOI: https://doi.org/10.1007/978-3-319-04508-5_81-2

  2. Original

    Porous Silicon for Microdevices and Microsystems
    Published:
    07 May 2014

    DOI: https://doi.org/10.1007/978-3-319-04508-5_81-1