Porous Silicon Electrochemical Biosensors: Performance and Commercial Prospects

Living reference work entry

Abstract

This chapter reviews the performance of electrochemical biosensors based on porous silicon (PS) substrates and their prospects for commercialization. Different transduction mechanisms have been discussed with emphasis on various issues like nature of PS–metal contacts, orientation of the molecules within the pores, equivalent circuit models, and modulation of electric field lines through the pores and its interface with the biomolecules and ions of the analytes. Critical assessment indicates that sensitivity, reproducibility, and longevity are significantly affected by these factors and not only by the surface-area-to-volume ratio. The mechanisms of metal contact fabrication and surface derivatization have also been briefly discussed. For enhancing the commercial prospects of such sensors, the reliability aspects and recent attempts of integration with microfluidics platform have been outlined. Finally, the existing challenges and the future prospects of such devices for commercial use are highlighted.

Keywords

Amperometric biosensors Antibody immobilization Conductance biosensor DNA hybridization detection DNA–cDNA interactions Electrolyte insulator semiconductor-based capacitive (EISCAP) structure Glucose sensing Glutaraldehyde and maleimidobutyric acid N-succinimidyl ester (GMBS) Impedance biosensors Microfluidics platform Porous silicon electrochemical biosensors 

References

  1. Ahmed MU, Hossain MM, Safavieh M, Wong YL, Rahman IA, Zourob M, Tamiya E (2015) Toward the development of smart and low cost point-of-care biosensor based on screen printed electrodes. Crit Rev Biotechnol. doi:10.3109/07388551.2014.992387Google Scholar
  2. Alvarez SD, Derfus AM, Schwartz MP, Bhatia SN, Sailor MJ (2009) The compatibility of hepatocytes with chemically modified porous silicon with reference to in vitro biosensors. Biomaterials 30:26–34CrossRefGoogle Scholar
  3. Archer M, Christophersen M, Fauchet PM (2004) Macroporous silicon electrical sensor for DNA hybridization detection. Biomed Microdevices 6:203–211CrossRefGoogle Scholar
  4. Balagurov LA, Bayliss SC, Kasatochkin VS, Petrova EA, Unal B, Yarkin DG (2001) Transport of carriers in metal/porous silicon/c-Si device structures based on oxidized porous silicon. J Appl Phys 90:4543–4548CrossRefGoogle Scholar
  5. Barillaro G, Bruschi P, Lazzerini GM, Strambini LM (2010) Validation of the compatibility between a porous silicon-based gas sensor technology and standard microelectronic process. IEEE Sens 10:893–899CrossRefGoogle Scholar
  6. Basu J, RoyChaudhuri C (2016) Attomolar sensitivity of FET biosensor based on smooth and reliable graphene nanogrids. IEEE Elec Dev Lett 37:493–495CrossRefGoogle Scholar
  7. Ben-Chorin M, Kux A, Schechter I (1994) Adsorbate effects on photoluminescence and electrical conductivity of porous silicon. Appl Phys Lett 64:481–483CrossRefGoogle Scholar
  8. Bergveld P (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng 17:70–71CrossRefGoogle Scholar
  9. Bergveld P (1972) Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. IEEE Trans Biomed Eng 19:342–351CrossRefGoogle Scholar
  10. Betty CA (2009) Highly sensitive capacitive immunosensor based on porous silicon–polyaniline structure: bias dependence on specificity. Biosens Bioelectron 25:338–343CrossRefGoogle Scholar
  11. Betty CA (2016) Nanostructured semiconductor based biochemical sensors. Mater Sci Technol 32:375–379CrossRefGoogle Scholar
  12. Betty CA, Lal R, Sharma DK, Yakhmi JV, Mittal JP (2004) Macroporous silicon based capacitive affinity sensor-fabrication and electrochemical studies. Sensors Actuators B Chem 97:334–343CrossRefGoogle Scholar
  13. Betty CA, Lal R, Yakhmi JV (2009) Impedance model of electrolyte–insulator–semiconductor structure with porous silicon semiconductor. Electrochim Acta 54:3781–3787CrossRefGoogle Scholar
  14. Cai X, Gao X, Wang L, Wu Q, Lin X (2013) A layer by layer assembled and carbon nanotube/gold nanoparticles based bienzyme biosensors for cholesterol detection. Sensors Actuators B Chem 181:575–583CrossRefGoogle Scholar
  15. Ciampi S, Bocking T, Kilian KA, James M, Harper JB, Gooding JJ (2007) Functionalization of acetylene-terminated monolayers on Si(100) surfaces: a click chemistry approach. Langmuir 23:9320–9329CrossRefGoogle Scholar
  16. Ciampi S, Bocking T, Kilian KA, Harper JB, Gooding JJ (2008) Click chemistry in mesoporous materials: functionalization of porous silicon rugate filters. Langmuir 24:5888–5892CrossRefGoogle Scholar
  17. Ciampi S, Guan B, Darwish NA, Zhu Y, Reece PJ, Gooding JJ (2012) A multimodal optical and electrochemical device for monitoring surface reactions: redox active surfaces in porous silicon Rugate filters. Phys Chem Phys 14:16433–16439CrossRefGoogle Scholar
  18. Cunin F, Schmedake TA, Link JR, Li YY, Koh J, Bhatia SN, Sailor MJ (2002) Biomolecular screening with encoded porous silicon photonic crystals. Nat Mater 1:39–41CrossRefGoogle Scholar
  19. Das N, RoyChaudhuri C (2015) Reliability study of nanoporous silicon oxide impedance biosensor for virus detection: influence of surface roughness. IEEE Trans Device Mater Reliab 15:402–209CrossRefGoogle Scholar
  20. Das RD, RoyChaudhuri C, Maji S, Das S, Saha H (2009) Macroporous silicon based simple and efficient trapping platform for electrical detection of salmonella typhimurium pathogens. Biosens Bioelectron 24:3215–3222CrossRefGoogle Scholar
  21. Das RD, Maji S, Das S, RoyChaudhuri C (2010) Optimization of covalent antibody immobilization on macroporous silicon solid supports. Appl Surf Sci 256:5867–5975CrossRefGoogle Scholar
  22. Das RD, Dey A, Das S, RoyChaudhuri C (2011) Interdigitated electrode-less high performance macroporous silicon structure as impedance biosensor for bacteria detection. IEEE Sens 11:1242–1252CrossRefGoogle Scholar
  23. Das RD, Mondal N, RoyChaudhuri C (2012) Optimized electrode geometry for an improved impedance based macroporous silicon bacteria detector. IEEE Sens 12:1868–1877CrossRefGoogle Scholar
  24. Das N, Basu J, RoyChaudhuri C (2015) Graphene coated nanoporous silicon immunosensor for food toxin detection. Int J Adv Eng Sci Appl Math 7:204–209CrossRefGoogle Scholar
  25. Dengll LH, Karagiannoglou SH, Sakkas WI, Barbenel JC (2002) Effects of geometrical factors of coplanar electrodes on biomedical measurements as exemplified by the electrical impedance measurement of saline and blood. In: Proceedings of the second joint EMBS/BMES conference IEEE, pp 1667–1668Google Scholar
  26. Dhanekar S, Jain S (2013) Porous silicon biosensor: current status. Biosens Bioelectron 41:54–64CrossRefGoogle Scholar
  27. Dhar S, Chakraborti S (1996) Electroless nickel plated contacts on porous silicon. Appl Phys Lett 68:1392CrossRefGoogle Scholar
  28. Ensafi AA (2016) Porous silicon electrochemical biosensors: basic principles and detection strategies. In: Handbook on porous silicon. Springer, ChamGoogle Scholar
  29. Ensafi AA, Abarghoui MM, Rezaei B (2014) A new non-enzymatic glucose sensor based on copper/porous silicon nanocomposite. Electrochim Acta 123:19–226CrossRefGoogle Scholar
  30. Ensafi AA, Abarghoui MM, Rezaei B (2015) Simultaneous determination of morphine and codeine using Pt nanoparticles supported on porous silicon flour modified ionic liquid carbon paste electrode. Sensors Actuators B Chem 219:1–9CrossRefGoogle Scholar
  31. Esteves A, Patarata L, Saraiva C, Martins C (2008) Assessment of the microbiological characteristics of industrially produced Alheira, with particular reference to foodborne pathogens. J Food Saf 28:88–102CrossRefGoogle Scholar
  32. Fernandez RE, Bhattacharya E, Chadha A (2008) Covalent immobilization of Pseudomonas cepacia lipase on semiconducting materials. Appl Surf Sci 254:4512–4519CrossRefGoogle Scholar
  33. Fernandez RE, Stolyarova S, Chadha A, Bhattacharya E, Nemirovsky Y (2009) MEMS composite porous silicon/polysilicon cantilever sensor for enhanced triglycerides biosensing. IEEE Sensors J 9:1660–1666CrossRefGoogle Scholar
  34. Fonthal F, Trifonov T, Rodriguez A, Goyes C, Vilanova X, Pallares J (2007) Fabrication and Characterization of Porous Silicon on crystalline Silicon based devices. In: IEEE conference on fourth congress of electronics, robotics and automotive mechanics, pp 170–174Google Scholar
  35. Ghosh H, RoyChaudhuri C (2013) Ultrasensitive food toxin biosensor using frequency based signals of silicon oxide nanoporous structure. Appl Phys Lett 102:243701–243704CrossRefGoogle Scholar
  36. Ghosh H, RoyChaudhuri C (2015) Noise spectroscopy as an efficient tool for impedance based sub-femtomolar toxin detection in complex mixture using nanoporous silicon oxide. Biosens Bioelectron 67:757–762CrossRefGoogle Scholar
  37. Gupta B, Gooding JJ (2016) Biomolecule attachment to porous silicon. In: Handbook on porous silicon. Springer, ChamGoogle Scholar
  38. Harraz FA (2014) Porous silicon chemical sensors and biosensors: a review. Sensors Actuators B Chem 202:897–912CrossRefGoogle Scholar
  39. Harraz FA, Ismail AA, Bouzid H, Al-Sayari SA, Al-Hajry A, Al-Assiri MS (2015) Electrical porous silicon sensor for detection of various organic molecules in liquid phase. Phys Status Solidi A. doi:10.1002/pssa.201431780Google Scholar
  40. Hernandez-Montelongo J, Munoz-Noval A, García-Ruíz JP, Torres-Costa V, Martín-Palma R, Manso-Silvan M (2015) Nanostructured porous silicon: the winding road from photonics to cell scaffolds – a review. doi:10.3389/fbioe.2015.00060Google Scholar
  41. Islam MN, Ram SK, Kumar S (2009) Mott and Efros-Shklovskii hopping conductions in porous silicon nanostructures. Phys E 41:1025–1028CrossRefGoogle Scholar
  42. Jan SD, Patel KR (2013) Enzyme immunoassay and enzyme linked immunosorbent assay. J Invest Dermatol 13:e12(1-3)Google Scholar
  43. Jane A, Dronov R, Hodges A, Voelcker NH (2009) Porous silicon biosensors on the advance. Trends Biotechnol 27:230–239CrossRefGoogle Scholar
  44. Jang J (2008) Organic light-emitting diode with polyaniline-poly (styrene sulfonate) as a hole injection layer. Thin Solid Films 516:3152–3156CrossRefGoogle Scholar
  45. Jarvis KL, Barnes TJ, Prestidge CA (2012) Surface chemistry of porous silicon and implications for drug encapsulation and delivery applications. Adv Colloid Interf Sci 175:25–38CrossRefGoogle Scholar
  46. Jin J, Zhang D, Alocilja EC (2008) Label-free DNA sensor on nanoporous silicon-polypyrrole chip for monitoring salmonella species. IEEE Sensors J 8:891–895CrossRefGoogle Scholar
  47. Jin J, Hong S, Min NK (2009) Integrated urea sensor module based on poly(3-methylthiophene)-modified p-type porous silicon substrate. J Porous Mater 16:379–386CrossRefGoogle Scholar
  48. Jin J, Alocilja EC, Grooms DL (2010) Fabrication and electroanalytical characterization of label-free DNA sensor based on direct electropolymerization of pyrrole on p-type porous silicon substrates. J Porous Mater 17:169–176CrossRefGoogle Scholar
  49. Kanungo J, Basu S (2014) Ohmic and rectifying contacts to porous silicon. In: Handbook on porous silicon. Springer, ChamGoogle Scholar
  50. Kanungo J, Maji S, Saha H, Basu S (2009) Stable aluminium ohmic contact to surface modified porous silicon. Solid State Electron 53:663–668CrossRefGoogle Scholar
  51. Kovacs A, Mescheder U (2012) Transport mechanisms in nanostructured porous silicon layers for sensor and filter applications. Sensors Actuators B Chem 175:179–185CrossRefGoogle Scholar
  52. Kumari V, Mishra P, Islam SS (2012) Development and standardization of porous silicon for application as a working electrode in electrochemical immunosensor. In: 16th international workshop on physics of semiconductor devices, p 85491IGoogle Scholar
  53. Laczka O, Baldrich E, Munoz FX, Campo FJD (2008) Detection of escherichia coli and salmonella typhimurium using interdigitated microelectrode capacitive immunosensors: the importance of transducer geometry. Anal Chem 80:7239–7247CrossRefGoogle Scholar
  54. Li XJ, Chen SJ, Feng CY (2007) Characterization of silicon nanoporous pillar array as room-temperature capacitive ethanol gas sensor. Sensors Actuators B Chem 123:461–465CrossRefGoogle Scholar
  55. Li HL, Zhu Y, Xu D, Wan Y, Xia L, Zhao X (2009) Vapor-phase silanization of oxidized porous silicon for stabilizing composition and photoluminescence. J Appl Phys 105:114307CrossRefGoogle Scholar
  56. Li S, Cui H, Yuan Q, Wu J, Wadhwa A, Eda S, Jiang H (2014) AC electrokinetics enhanced capacitive immunosensor for point of care serodiagnosis of infectious diseases. Biosens Bioelectron 51:437–443CrossRefGoogle Scholar
  57. Lopez-Garcia J, Martin-Palma RJ, Manso M, Martinez-Duart JM (2007) Porous silicon based structures for the electrical biosensing of glucose. Sensors Actuators B Chem 126:82–85CrossRefGoogle Scholar
  58. Lu X, Xiao Y, Lei Z, Chen J (2009) Graphitized macroporous carbon microarray with hierarchical mesopores as host for the fabrication of electrochemical biosensor. Biosens Bioelectron 25:244–247CrossRefGoogle Scholar
  59. Lugo J, Ocampo M, Kirk AG, Plant DV, Fauchet PM (2007) Electrochemical sensing of DNA with porous silicon layers. J New Mater Electrochem Syst 10:113–116Google Scholar
  60. Lundstrom I, Sundgren H, Winquist F, Eriksson M, Rulcker CK, Spetz AL (2007) Twenty-five years of field effect gas sensor research in linkoping. Sensors Actuators B Chem 121:247–262CrossRefGoogle Scholar
  61. Luo X, Davis J (2013) Electrical biosensors and the label free detection of protein disease biomarkers. Chem Soc Rev 42:5944–5962CrossRefGoogle Scholar
  62. Luth H, Thust M, Steffen A, Kordos P, Schoning MJ (2000) Biochemical sensors with structured and porous silicon capacitors. Mater Sci Eng B69–70:104–108CrossRefGoogle Scholar
  63. Maedler C, Erramilli S, LJ H, Hong MK, Mohanty P (2013) Tunable nanowire Wheatstone bridge for improved sensitivity in molecular recognition. Appl Phys Lett 102:043112(1-4)CrossRefGoogle Scholar
  64. Mahmoudi B, Gabouze N, Haddadi M, Mahmoudi BR, Cheraga H, Jilali KB, D. Dahmane (2007) The effect of annealing on the sensing properties of porous silicon gas sensor: use of screen-printed contacts. Sensors Actuators B Chem 123:680–784Google Scholar
  65. Maji S, Das RD, Jana M, RoyChaudhuri C, Mondal N, Dutta SK, Bandopadhyay NR, Saha H (2010) Formation of ohmic contact by pre-annealing of shallow nanopores in macroporous silicon and its characterization. Solid State Electron 54:568–574CrossRefGoogle Scholar
  66. Melikjanyan GA, Martirosyan KS (2011) Possibility of application of porous silicon as glucose biosensor. Am J Physiol 4:225–227Google Scholar
  67. Melikjanyan GA, Martirosyan KS (2012) Influence of anodization parameters of porous silicon on its glucose sensitivity. J Contemp Phys 47:294–297Google Scholar
  68. Moeller F, Ban-Chorin M, Koch F (1995) Post-treatment effects on electrical conduction in porous silicon. Thin Solid Films 255:16CrossRefGoogle Scholar
  69. Mora MB, Ocampo M, Doti R, Lugo JE, Faubert J (2013) Chapter 6 porous silicon biosensors. In: State of the art in biosensors-general aspects. Intech PublishersGoogle Scholar
  70. Munje RD, Muthukumar S, Selvam AP, Prasad S (2015) Flexible nanoporous tunable electrical double layer biosensors for sweat diagnostics. Sci Rep 5:14586CrossRefGoogle Scholar
  71. Nagare GD, Mukherji S (2009) Characterization of silanization and antibody immobilization on spin-on glass (SOG) surface. Appl Surf Sci 255:3696–3700CrossRefGoogle Scholar
  72. Nguyen MH, Tsai HJ, Wu JK, Wu YS, Lee M, Tseng FG (2013) Cascaded nano-porous silicon for high sensitive biosensing and functional group distinguishing by Mid-IR spectra. Biosens Bioelectron 47:80–85CrossRefGoogle Scholar
  73. Orabona E, Rendina I, Stefano LD, Rea I (2011) Chapter 12 Porous silicon integrated photonic devices for biochemical optical sensing. In: Crystalline silicon-properties and uses. Intech Publishers, RijekaGoogle Scholar
  74. Parkhutik V, Timashev S (2000) Kinetics of porous silicon growth studied using flicker-noise spectroscopy. J Appl Phys 87:7558–7566CrossRefGoogle Scholar
  75. Prabhakar D, Kumari V, Islam SS (2012) Nanoporous silicon based electrochemical immunosensor. Sci Adv Mater 4:121–125CrossRefGoogle Scholar
  76. Radke SM, Alocilja EC (2004) Design and fabrication of a microimpedance biosensor for bacterial detection. IEEE Sensors J 4:434–440CrossRefGoogle Scholar
  77. Rea I, Lamberti A, Rendina I, Coppola G, Gioffrè M, Iodice M, Casalino M, Tommasi ED, Stefano LD (2010) Fabrication and characterization of a porous silicon based microarray for label-free optical monitoring of biomolecular interactions. J Appl Phys 107:014513(1-5)CrossRefGoogle Scholar
  78. Rea I, Orabona E, Lamberti A, Rendina I, Stefano LD (2011) A microfluidics assisted porous silicon array for optical label-free biochemical sensing. Biomicrofluidics 5:0341201–03412010CrossRefGoogle Scholar
  79. Recio-Sanchez G, Torres-Costa V, Manso M, Gallach D, Lopez-Garcia J, Martin-Palma RJ (2010) Towards the development of electrical biosensors based on nanostructured porous silicon. Materials 3:755–763CrossRefGoogle Scholar
  80. Reddy RRK, Chadha A, Bhattacharya E (2001) Porous silicon based potentiometric triglyceride biosensor. Biosens Bioelectron 16:313–317CrossRefGoogle Scholar
  81. Ressine A, Marko-Varga G, Laurell T (2007) Porous silicon protein microarray technology and ultra−/superhydrophobic states for improved bioanalytical readout. Biotechnol Annu Rev 13:149–200CrossRefGoogle Scholar
  82. Ressine A, VazDomínguez C, Fernandez VM, Lacey ALD, Laurell T, Ruzgas T, Shleev S (2010) Bioelectrochemical studies of azurin and laccase confined in three-dimensional chips based on gold-modified nano/microstructured silicon. Biosens Bioelectron 25:1001–1007CrossRefGoogle Scholar
  83. Reta N, Michelmore A, Saint C, Prieto-Simón B, Voelcker NH (2016) Porous silicon membrane-modified electrodes for label-free voltammetric detection of MS2 bacteriophage. Biosens Bioelectron 80:47–53CrossRefGoogle Scholar
  84. RoyChaudhuri C (2015) A review on porous silicon based electrochemical biosensors: beyond surface area enhancement factor. Sensors Actuators B Chem 210:310–323CrossRefGoogle Scholar
  85. RoyChaudhuri C, Das RD (2010) A biomolecule compatible electrical model of microimpedance affinity biosensor for sensitivity improvement in cell detection. Sens Actuators A 157:280–289CrossRefGoogle Scholar
  86. RoyChaudhuri C, Kanungo J, Das RD, Dutta SK, RoyChaudhuri S, Majhi S, Saha H (2008) Electrical sensing of biochemicals using macroporous silicon. Lecture notes in electrical engineering, vol 20. Springer Berlin Heidelberg, pp 101–116Google Scholar
  87. Saha H, Pramanik C (2006) Porous Silicon Based Sensors: prospects and Challenges. Mater Manuf Process 21:239–246CrossRefGoogle Scholar
  88. Salis A, Setzu S, Monduzzi M, Mula G (2011) Chapter 17 porous silicon-based electrochemical biosensors. In: Biosensors-emerging materials and applications. Intech Publishers, RijekaGoogle Scholar
  89. Samanta N, RoyChaudhuri C (2015) Nanocrystalline silicon oxide impedance immunosensors for sub-femtomolar mycotoxin estimation in corn samples by incremental fuzzy approach. IEEE Sens 16:1069–1078CrossRefGoogle Scholar
  90. Samanta N, Kundu O, RoyChaudhuri C (2013) A simple low power electronic readout for rapid bacteria detection with impedance biosensor. IEEE Sens 13:4716–4724CrossRefGoogle Scholar
  91. Santos A, Kumeria T, Losic D (2013) Nanoporous anodic aluminum oxide for chemical sensing and biosensors. Trends Anal Chem 44:25–38CrossRefGoogle Scholar
  92. Scheen G, Bassu M, Francis LA (2012) Metal electrode integration on macroporous silicon: pore distribution and morphology. Nanoscale Res Lett 7:395 (1-5)CrossRefGoogle Scholar
  93. Schoning MJ, Ronkel F, Crott M, Thust M, Schultze JW, Kordos P, Luth H (1997) Miniaturization of potentiometric using porous silicon microtechnology. Electrochim Acta 42:3185–3193CrossRefGoogle Scholar
  94. Schoning MJ, Kurowski A, Thust M, Kordos P, Schultze JW, Luth H (2000a) Capacitive microsensors for biochemical sensing based on porous silicon technology. Sens Actuators B 64:59–64CrossRefGoogle Scholar
  95. Schoning MJ, Malkoc U, Thust M, Steffen A, Kordos P, Luth H (2000b) Novel electrochemical sensors with structured and porous semiconductor/insulator capacitor. Sensors Actuators B Chem 65:288–290CrossRefGoogle Scholar
  96. Shahbazi MA, Hamidi M, Makila EM, Zhang H, Almeida PV, Kaasalainen M, Salonen JJ, Hirvonan JJ, Santos HA (2013) The mechanisms of surface chemistry effects of mesoporous silicon nanoparticles on immunotoxicity and biocompatibility. Biomaterials 34:7776–7789CrossRefGoogle Scholar
  97. Shanmugam NR, Selvam AP, Barrett TW, Kazmierczak SC, Rana MN, Prasad S (2015) Portable nanoporous electrical biosensor for ultrasensitive detection of Troponin-T. Future Sci OA 1:FSO24CrossRefGoogle Scholar
  98. Simonisa A, Rugeb C, Muller-Veggian M, Luth H, Schoning MJ (2003) A long-term stable macroporous-type EIS structure for electrochemical sensor applications. Sensors Actuators B Chem 91:21–25CrossRefGoogle Scholar
  99. Singh R, Mukherjee M, Sumana G, Gupta RK, Sood S, Malhotra BD (2014) Biosensors for pathogen detection: a smart approach towards clinical diagnosis. Sensors Actuators B Chem 197:385–404CrossRefGoogle Scholar
  100. Siu WM, Cobbold RSC (1979) Basic properties of the electrolyte-Si02-Si system: physical and theoretical aspects. IEEE Trans Electron Devices 26:1805–1815CrossRefGoogle Scholar
  101. Song M, Yun D, Min N, Hong S (2007) Electrochemical biosensor array for liver diagnosis using silanization technique on nanoporous silicon electrode. J Biosci Bioeng 1:32–37CrossRefGoogle Scholar
  102. Song YY, Li Y, Yang C, Xia XH (2008) Surface electric field manipulation of the adsorption kinetics and biocatalytic properties of cytochrome c on a 3D macroporous Au electrode. Anal Bioanal Chem 390:333–341CrossRefGoogle Scholar
  103. Song MJ, Yun DH, Hong SI (2009) An electrochemical biosensor array for rapid detection of alanine aminotransferase and aspartate aminotransferase. Biosci Biotechnol Biochem 73:474–478CrossRefGoogle Scholar
  104. Stefano LD, Orabona E, Lamberti A, Rea I, Rendina I (2013) Microfluidics assisted biosensors for label-free optical monitoring of molecular interactions. Sensors Actuators B Chem 179:157–162CrossRefGoogle Scholar
  105. Stolyarova S, Nemirovsky Y (2011) Porous silicon as a nanostructured template for enhanced immobilization and crystallization of inorganic and biomaterials. ECS Trans 33:137–145CrossRefGoogle Scholar
  106. Stolyarova S, Cherian S, Raiteri R, Zeravik J, Skladal P, Nemirovsky Y (2008) Composite porous silicon-crystalline silicon cantilevers for enhanced biosensing. Sensors Actuators B Chem 131:509–515CrossRefGoogle Scholar
  107. Szili EJ, Jane A, Low SP, Sweetman M, Macardle P, Kumar S, Smart RSC, Voelcker NH (2011) Interferometric porous silicon transducers using an enzymatically amplified optical signal. Sensors Actuators B Chem 160:341–348CrossRefGoogle Scholar
  108. Tang J, Wang Y, Li J, Da P, Geng J, Zheng G (2014) Sensitive enzymatic glucose detection by TiO2 nanowire photoelectrochemical biosensors. J Mater Chem A 2:6153–6157CrossRefGoogle Scholar
  109. Tao X, Xiao-yi L, Zhen-hong J, Shi-bin H, Fu-chun Z (2008) Research on immunosensor based on porous silicon. Optoelectron Lett 4:0328–0330CrossRefGoogle Scholar
  110. Tembe S, Chaudhari PS, Bhoraskar SV, D’Souza SF, Karve MS (2009) Conductivity-based catechol sensor using tyrosinase immobilized in porous silicon. IEEE. Sensors 8:1593–1597CrossRefGoogle Scholar
  111. Valentini V, Polini R (2011) Confined functionalization of mesoporous silicon layers. J Electrochem Soc 158:K35–K41CrossRefGoogle Scholar
  112. Vamvakaki V, Chaniotakis NA (2008) DNA stabilization and hybridization detection on porous silicon surface by EIS and total reflection FT-IR spectroscopy. Electroanalysis 20:1845–1850CrossRefGoogle Scholar
  113. Veeramani MS, Shyam KP, Ratchagar NP, Chadha A, Bhattacharya E (2014) Miniaturised silicon biosensors for the detection of triglyceride in blood serum. Anal Methods 6:1728–1735CrossRefGoogle Scholar
  114. Vemulachedu H, Fernandez RE, Bhattacharya E, Chadha A (2009) Miniaturization of EISCAP sensor for triglyceride detection. J Mater Sci Mater Med 20:S229–S234CrossRefGoogle Scholar
  115. Wu Y, Chen C, Liu S (2009) Enzyme-functionalized silica nanoparticles as sensitive labels in biosensing. Anal Chem 81:1600–1607CrossRefGoogle Scholar
  116. Xu W, Riikonen J, Nissinen T, Suvanto M, Rilla K, Li B, Wang Q, Deng F, Lehto VP (2012) Amine surface modifications and fluorescent labeling of thermally stabilized mesoporous silicon nanoparticles. J Phys Chem C 116:22307–22314CrossRefGoogle Scholar
  117. Yun D, Song M, Hwang S, Hong S (2012) Fabrication and electrochemical characterization of nanoporous silicon electrode for amperometric urea biosensor. Jpn J Appl Phys 51:06FG02CrossRefGoogle Scholar
  118. Zhang D, Alocilja EC (2008) Characterization of nanoporous silicon-based DNA biosensor for the detection of salmonella enteritidis. IEEE Sensors J 8:775–780CrossRefGoogle Scholar
  119. Zhang H, Jia Z, Lv X, Zhou J, Chen L, Liu R, Ma J (2013) Porous silicon optical microcavity biosensor on silicon-on-insulator wafer for sensitive DNA detection. Biosens Bioelectron 44:89–94CrossRefGoogle Scholar
  120. Zimin SP, Kuznetsov VS, Prokaznikov AV (1995) Electrical characteristics of aluminum contacts to porous silicon. Appl Surf Sci 91:355–358CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.Department of Electronics and Telecommunication EngineeringIndian Institute of Engineering Science and TechnologyHowrahIndia

Personalised recommendations