Skip to main content

Biomolecule Adsorption and Release from Porous Silicon

  • Living reference work entry
  • First Online:
Handbook of Porous Silicon

Abstract

Pore size, surface chemistry, and surface area are the three most important criteria to consider when designing a porous silicon (pSi) biomolecule carrier matrix, and their effects are reviewed. Matrices possessing optimum pore diameter distributions facilitate restricted diffusion of small and large biomolecules into and out of the pores. Thermal oxidation is a popular means to remove reactive hydride species from the surface which would otherwise denature adsorbed biomolecules. Hydrophilic/hydrophobic characteristics of the pSi surface can be tuned to facilitate “ordered” adsorption of a protein and improve its stability. The physiochemical properties of a biomolecule also dictate protein-surface interaction. Moreover, the size (hydrodynamic radius) and shape (globular, fibrous, etc.) of biomolecules also govern their mobility and arrangement on the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson SHC, Elliott H, Wallis DJ, Canham LT, Powell JJ (2003) Dissolution of different forms of partially porous silicon wafers under simulated physiological conditions. Phys Status Solidi A Appl Res 197:331–335

    Article  Google Scholar 

  • Armstrong JK, Wenby RB, Meiselman HJ, Fisher TC (2004) The hydrodynamic radii of macromolecules and their effect on red blood cell aggregation. Biophys J 87(6):4259–4270

    Article  Google Scholar 

  • Arwin H, Gavutis M, Gustafsson J, Schultzberg M, Zangooie S, Tengvall P (2000) Protein adsorption in thin porous silicon layers. Phys Status Solidi A 182(1):515–520

    Article  Google Scholar 

  • Bromberg L, Rashba-Step J, Scott T (2005) Insulin particle formation in supersaturated aqueous solutions of poly(ethylene glycol). Biophys J 89(5):3424–3433

    Article  Google Scholar 

  • Cai C, Bakowsky U, Rytting E, Schaper AK, Kissel T (2008) Charged nanoparticles as protein delivery systems: a feasibility study using lysozyme as model protein. Eur J Pharm Biopharm 69:31–42

    Article  Google Scholar 

  • Canham LT (1995) Bioactive silicon structure fabrication through nanoetching techniques. Adv Mater. doi:10.1002/adma.19950071215

    Google Scholar 

  • Canham LT, Reeves CL, King DO, Branfield PJ, Crabb JG, Ward MCL (1996) Bioactive polycrystalline silicon. Adv Mater 8:850–852. doi:10.1002/adma.19960081020

    Article  Google Scholar 

  • Chiu K, Agoubi LL, Lee I, Limpar MT, Lowe JW, Goh SL (2010) Effects of polymer molecular weight on the size, activity, and stability of PEG-functionalized trypsin. Biomacromolecules 11(12):3688–3692

    Article  Google Scholar 

  • Creighton TE (1988) Disulphide bonds and protein stability. Bioessays 8(2–3):57–63

    Article  Google Scholar 

  • Deere J, Magner E, Wall JG, Hodnett BK (2001) Adsorption and activity of cytochrome c on mesoporous silicates. Chem Commun 465–465.

    Google Scholar 

  • Deere J, Magner E, Wall JG, Hodnett BK (2002) Mechanistic and structural features of protein adsorption onto mesoporous silicates. J Phys Chem B 106(29):7340–7347

    Article  Google Scholar 

  • Duinhoven S, Poort R, Van der Voet G, Agterof WGM, Norde W, Lyklema J (1995) Driving forces for enzyme adsorption at solid-liquid interfaces: 1. The serine protease savinase. J Colloid Interface Sci 170(2):340–350

    Article  Google Scholar 

  • Eisinger J, Clairet D (1993) Effects of silicon, fluoride, etidronate and magnesium on bone mineral density: a retrospective study. Magnes Res 6(3):247–249

    Google Scholar 

  • Fekete S, Beck A, Fekete J, Guillarme D (2015) Method development for the separation of monoclonal antibody charge variants in cation exchange chromatography, part II: pH gradient approach. J Pharm Biomed Anal 102:282–289

    Article  Google Scholar 

  • Fu K, Klibanov AM, Langer R (2000) Protein stability in controlled-release systems. Nat Biotechnol 18:24–25

    Article  Google Scholar 

  • Gokarn YR, Fesinmeyer RM, Saluja A, Razinkov V, Chase SF, Laue TM, Brems DN (2011) Effective charge measurements reveal selective and preferential accumulation of anions, but not cations, at the protein surface in dilute salt solutions. Protein Sci 20(3):580–587

    Article  Google Scholar 

  • Haynes CA, Norde W (1994) Globular proteins at solid/liquid interfaces. Colloids Surf B: Biointerfaces 2:517–566

    Article  Google Scholar 

  • Higuchi T (1961) Rate of release of medicaments from ointment bases containing drugs in suspension. J Pharm Sci 50(10):874–875

    Article  Google Scholar 

  • Hirvonen LM, Fruhwirth GO, Srikantha N, Barber MJ, Neffendorf JE, Suhling K, Jackson TL (2016) Hydrodynamic radii of ranibizumab, aflibercept and bevacizumab measured by time-resolved phosphorescence anisotropy. Pharm Res 33:2025–2032. doi:10.1007/s11095-016-1940-2

    Article  Google Scholar 

  • Hon NK, Shaposhnik Z, Diebold ED, Tamanoi F, Jalali B (2012) Tailoring the biodegradability of porous silicon nanoparticles. J Biomed Mater Res 100A:3416–3421. doi:10.1002/jbm.a.34294

    Article  Google Scholar 

  • Jarvis KL, Barnes TJ, Prestidge CA (2010) Thermal oxidation for controlling protein interactions with porous silicon. Langmuir 26(17):14316–14322

    Article  Google Scholar 

  • Jarvis KL, Barnes TJ, Prestidge CA (2011) Surface chemical modification to control molecular interactions with porous silicon. J Colloid Interface Sci 363:327–333

    Article  Google Scholar 

  • Jarvis KL, Barnes TJ, Prestidge CA (2012) Surface chemistry of porous silicon and implications for drug encapsulation and delivery applications. Adv Colloid Interf Sci 175:25–38

    Article  Google Scholar 

  • Jonkheijm P, Weinrich D, Schröder H, Niemeyer CM, Waldmann H (2008) Chemical strategies for generating protein biochips. Angew Chem Int Ed Eng 47(50):9618–9647

    Article  Google Scholar 

  • Kaasalainen M, Rytkönen J, Mäkilä E, Närvänen A, Salonen J (2015) Electrostatic interaction on loading of therapeutic peptide GLP-1 into porous silicon nanoparticles. Langmuir 31:1722–1729

    Article  Google Scholar 

  • Karlsson LM, Tengvall P, Lundström I, Arwin H (2003) Tailoring the biodegradability of porous silicon nanoparticles. J Colloid Interface Sci 266(1):40–47

    Article  Google Scholar 

  • Kasemo B (2002) Biological surface science. Surf Sci 500:656–677

    Article  Google Scholar 

  • Katiyar A, Ji L, Smirniotis P, Pinto NG (2005) Protein adsorption on the mesoporous molecular sieve silicate SBA-15: effects of pH and pore size. J Chromatogr A 1069(1):119–126

    Article  Google Scholar 

  • Kim J, Desch RJ, Thiel SW, Guliants VV, Pinto NG (2011) Energetics of lysozyme adsorption on mesostructured cellular foam silica: effect of salt concentration. J Chromatogr A 1218(38):6697–6704

    Article  Google Scholar 

  • Landry MR (2005) Thermoporometry by differential scanning calorimetry: experimental considerations and applications. Thermochim Acta 433(1–2):27–50

    Article  Google Scholar 

  • Lodish H, Berk A, Zipursky LS, Matsudaira P, Baltimore D, Darnell J (2000) Molecular cell biology, 5th edn. W. H. Freeman and Company, New York

    Google Scholar 

  • Lowell S, Shields JE (2004) Characterization of porous solids and powder surface area, pore size and density. Kluwer Academic Publisher, Dordrecht

    Book  Google Scholar 

  • Malmsten M (1998) Formation of adsorbed protein layers. J Colloid Interface Sci 207(2):186–199

    Article  Google Scholar 

  • Moerz ST, Huber P (2014) Protein adsorption into mesopores: a combination of electrostatic interaction, counterion release, and van der Waals forces. Langmuir 30:2729–2737

    Article  Google Scholar 

  • Norde W, Favier JP (1992) Structure of adsorbed and desorbed proteins. Colloids Sur 64(1):87–93

    Article  Google Scholar 

  • Norde W, Lyklema J (1978) The adsorption of human plasma albumin and bovine pancreas ribonuclease at negatively charged polystyrene surfaces: v. microcalorimetry. J Colloid Interface Sci 66(2):295–302

    Article  Google Scholar 

  • Parks GA (1965) The isoelectric points of solid oxides, solid hydroxides, and aqueous hydroxo complex systems. Chem Rev 65(2):177–198

    Article  Google Scholar 

  • Parmar AS, Muschol M (2009) Hydration and hydrodynamic interactions of lysozyme: effects of chaotropic versus kosmotropic ions. Biophys J 97(2):590–598

    Article  Google Scholar 

  • Pastor EL, Reguera-Nunez E, Matveeva E, Garcia-Fuentes M (2015) Pore size is a critical parameter for obtaining sustained protein release from electrochemically synthesized mesoporous silicon microparticles. Peer J. doi:10.7717/peerj.1277

    Google Scholar 

  • Peppas NA (1985) Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv 60(4):110–111

    Google Scholar 

  • Pethica BA (2010) The thermodynamics of protein folding: a critique of widely used quasi-thermodynamic interpretations and a restatement based on the Gibbs–Duhem relation and consistent with the phase rule. Phys Chem Chem Phys 12:7445–7456

    Article  Google Scholar 

  • Prestidge CA, Barnett C, Barnesb TJ, Lauc CH, Loni A, Canham LT (2007) Mesoporous silicon: a platform for the delivery of therapeutics. Expert Opin Drug Deliv 4(2):101–110

    Article  Google Scholar 

  • Robertson AD (2002) Intramolecular interactions at protein surfaces and their impact on protein function: a review. Trends Biochem Sci 27(10):521–526

    Article  Google Scholar 

  • Salis A, Parsons DF, Bostrom M, Medda L, Barse B, Ninham BW, Monduzzi M (2010) Ion specific surface charge density of SBA-15 mesoporous silica. Langmuir 26:2484–2490

    Article  Google Scholar 

  • Salis A, Cugia F, Parsons DF, Ninhamb BW, Monduzzi M (2012) Hofmeister series reversal for lysozyme by change in pH and salt concentration: insights from electrophoretic mobility measurements. Phys Chem Chem Phys 14:4343–4346

    Article  Google Scholar 

  • Sang LC, Vinu A, Coppens MO (2011) General description of the adsorption of proteins at their iso-electric point in nanoporous materials. Langmuir 27:13828–13837

    Article  Google Scholar 

  • Scheer JM, Sandoval W, Elliott JM, Shao L, Luis E, Lewin-Koh SC, Schaefer G, Vandlen R (2012) Reorienting the Fab Domains of Trastuzumab Results in Potent HER2 Activators. http://dx.doi.org/10.1371/journal.pone.0051817

    Google Scholar 

  • Steri D, Monduzzi M, Salis A (2013) Ionic strength affects lysozyme adsorption and release from SBA-15 mesoporous silica. Microporous Mesoporous Mater 170:164–172

    Article  Google Scholar 

  • Torchilin V (2009) Intracellular delivery of protein and peptide therapeutics. Drug Discov Today Technol 5(2–3):95–103

    Google Scholar 

  • Torre JG, Huertas ML, Carrasco B (2000) Calculation of hydrodynamic properties of globular proteins from their atomic-level structure. Biophys J 78:719–730

    Article  Google Scholar 

  • Vinu A, Miyahara M, Ariga K (2005) Biomaterial immobilization in nanoporous carbon molecular sieves: influence of solution pH, pore volume, and pore diameter. J Phys Chem B 109:6436–6441

    Article  Google Scholar 

  • Vlckova M, Kalman F, Schwarz MA (2008) Pharmaceutical applications of isoelectric focusing on microchip with imaged UV detection. J Chromatogr A 1181:145–152

    Article  Google Scholar 

  • Welsch N, Becker AL, Dzubiellaab J, Ballauff M (2012) Core–shell microgels as “smart” carriers for enzymes. Soft Matter 8:1428–1436

    Article  Google Scholar 

  • Wilkins DK, Grimshaw SB, Receveur V, Dobson CM, Jones JA, Smith LJ (1999) Hydrodynamic radii of native and denatured proteins measured by pulse field gradient NMR techniques. Biochemistry 38(50):16424–16431

    Article  Google Scholar 

  • Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ (2005) Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng 11(1–2):1–18

    Article  Google Scholar 

  • Yigit C, Welsch N, Ballauff M, Dzubiella J (2012) Protein sorption to charged microgels: characterizing binding isotherms and driving forces. Langmuir 28(40):14373–14385

    Article  Google Scholar 

  • Yiu HHP, Botting CH, Botting NP, Wright PA (2001) Size selective protein adsorption on thiol-functionalised SBA-15 mesoporous molecular sieve. Phys Chem Chem Phys 3:2983

    Article  Google Scholar 

  • Yokogawa Y, Toma T, Saito A, Nakamura A, Kishida I (2011) Biomolecules loading and mesoporous SBA-15 pore sizes. Bioceram Dev Appl. doi:10.4303/bda/D110126

    Google Scholar 

  • Zhou M, Hartmann Z (2013) Progress in enzyme immobilization in ordered mesoporous materials and related applications. Chem Soc Rev 42:3894–3912

    Article  Google Scholar 

  • Zhu G, Mallery SR, Schwendeman SP (2000) Stabilization of proteins encapsulated in injectable poly (lactide- co-glycolide). Nat Biotechnol 18:52–57

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Nadarassan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this entry

Cite this entry

Nadarassan, D. (2016). Biomolecule Adsorption and Release from Porous Silicon. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-04508-5_124-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04508-5_124-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04508-5

  • Online ISBN: 978-3-319-04508-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics