Skip to main content

Characterization of Porous Silicon by EPR and ENDOR

  • Living reference work entry
  • First Online:
Handbook of Porous Silicon

Abstract

The results of EPR and ENDOR studies of Si nanocrystals in porous silicon layers are reviewed. The dominant type of paramagnetic centers in porous silicon, prepared in different conditions, is the Si dangling bond at the Si/SiO2 interface (the “Pb center”). Pb center concentration is very sensitive to vacuum heating, oxidation, and hydrogen treatment. The Pb center − 1H, 19F atoms distances have been estimated in the dipole-dipole approximation. Silicon dangling bonds, similar to those in amorphous silicon, are observed in porous silicon layers during vacuum annealing at temperatures higher than 300–400 °C. Free electron paramagnetic states (EX and E/ center defects) are also observed in this material. EPR spectroscopy can be successfully used for investigating singlet oxygen generation in porous silicon layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Archer RJ (1960) Stain films on silicon. J Phys Chem Sol 14:104–110

    Article  Google Scholar 

  • Ben-Chorin M, Kux A, Schechter I (1994) Adsorbate effects on PL and electrical conductivity of porous silicon. Appl Phys Lett 64:481–483

    Article  Google Scholar 

  • Bisi O, Ossicini S, Pavesi L (2000) Porous silicon: a quantum sponge structure for silicon based optoelectronics. Surf Sci Rep 38:1–126

    Article  Google Scholar 

  • Bomchil G, Halimaoui A, Herino R (1989) Porous silicon: the material and its applications in silicon-on-insulator technologies. Appl Surf Sci 41/41:604–613

    Google Scholar 

  • Brandt MS, Stutzmann M (1992) Spin-dependent effects in porous silicon. Appl Phys Lett 61:2569–2571

    Article  Google Scholar 

  • Bratus VY, Ishchenko SS, Okulov SM et al (1994) EPR and ENDOR study of the Pb center in porous silicon. Phys Rev B 50:15449–15452

    Article  Google Scholar 

  • Bratus VY, Ishchenko SS, Okulov SM et al (1995) Structure of the Pb center: ENDOR investigation. Materials Science Forum 196–201:529–534

    Article  Google Scholar 

  • Buda F, Kohanoff J, Parrinello M (1992) Optical properties of porous silicon: a first-principles study. Phys Rev Lett 69:1272–1275

    Article  Google Scholar 

  • Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57:1046–1048

    Article  Google Scholar 

  • Cantin JL, Schoisswohl M, Von Bardeleben HJ et al (1995) Electron-paramagnetic-resonance study of the microscopic structure of the Si(001)-SiO2 interface. Phys Rev B 52:R11599–R11602

    Article  Google Scholar 

  • Cantin JL, Schoisswohl M, Von Bardeleben HJ et al (1996) Observation of (100) surfaces in p-type porous silicon by electron paramagnetic resonance. Thin Sol Films 276:241–243

    Article  Google Scholar 

  • Chiesa M, Amato G, Boardino L et al (2003) Reversible insulator-to-metal transition in p+-type mesoporous silicon induced by the adsorption of ammonia. Angew Chem Int Ed 42:5031–5035

    Google Scholar 

  • Demin VA, Konstantinova EA, Kashkarov PK (2010) Luminescence and photosensitization properties of ensembles of silicon nanocrystals in terms of an exciton migration model. J Exp Theor Phys 111:830–843

    Article  Google Scholar 

  • Edwards AH (1988) In: Helms CR, Deal BE (eds) Physics and chemistry of SiO2 and the Si/ SiO2 interface. New York, Plenum

    Google Scholar 

  • Geobaldo F, Onida B, Rivolo P et al (2001) IR detection of NO2 using p+ porous silicon as high sensitivity sensor. Chem Commun 21:2196–2197

    Google Scholar 

  • Grosman A, Ortega C, Siejka J et al (1993a) A quantitative study of impurities in photoluminescent and non photoluminescent porous silicon layers. J Appl Phys 74:1992–1996

    Article  Google Scholar 

  • Grosman A, Chamarro M, Morazzani V et al (1993b) Study of anodic oxidation of porous silicon: relation between growth and physical properties. J Lumin 57:13–18

    Article  Google Scholar 

  • Cullis AG, Canham LТ, Calcott PDJ (1997) The structural and luminescence properties of porous silicon. Appl Phys Lett 82:909–965

    Google Scholar 

  • Kolasinski KW (2010) Charge transfer and nanostructure formation during electroless etching of silicon. J Phys Chem C 114:22098–22105

    Article  Google Scholar 

  • Konstantinova EA, Kashkarov PK, Timoshenko VY (1995) Spin centers peculiarities in nanostructures of porous silicon. Phys Low-Dim Struct 12:127–132

    Google Scholar 

  • Konstantinova EA, Pavlikov AV, Vorontsov AS et al (2009a) IR and EPR study of ammonia adsorption effect on silicon nanocrystals. Phys Status Solidi A 206:1330–1332

    Article  Google Scholar 

  • Konstantinova EA, Dittrich T, Timoshenko VY et al (1996) Adsorption-induced modification of spin and recombination centers in porous silicon. Thin Solid Films 276:265–267

    Article  Google Scholar 

  • Konstantinova EA (2007) Photoelectron processes in nanostructured silicon with spin centers. Thesis, Moscow State University, Moscow

    Google Scholar 

  • Konstantinova EA, Demin VA, Timoshenko VY (2008) Investigation of the generation of singlet oxygen in ensembles of photoexcited silicon nanocrystals by electron paramagnetic resonance spectroscopy. J Exp Theor Phys 107:473–481

    Article  Google Scholar 

  • Konstantinova EA, Demin VA, Ryabchikov YV et al (2009b) EPR and photoluminescence diagnostics of singlet oxygen generation on porous silicon surface. Phys Status Solidi (с) 6:1700–1703

    Article  Google Scholar 

  • Laiho R, Vlasenko LS, Afanasiev MM et al (1994) Electron paramagnetic resonance in heat-treated porous silicon. J Appl Phys 76:4290–4292

    Article  Google Scholar 

  • Laiho R, Vlasenko LS (1995) Electron paramagnetic resonance of dangling bond centers in vacuum-annealed porous silicon. J Appl Phys 78:2857–2859

    Article  Google Scholar 

  • Mao JS, Jia YQ, Fu JS et al (1993) Electron paramagnetic resonance observation of trigonally symmetric Si dangling bonds in porous silicon layers: evidence for crystalline Si phase. Appl Phys Lett 62:1408–1410

    Article  Google Scholar 

  • Meyer BK, Petrova-Koch V, Mushik T et al (1993) Electron spin resonance investigation of oxidized porous silicon. Appl Phys Lett 63:1930–1932

    Article  Google Scholar 

  • Mogoda AS, Ahmad YH, Badawy WA (2011) Characterization of stain etched p-type silicon in aqueous HF solutions containing HNO3 or KMnO4. Mat Chem Phys 126:676–684

    Article  Google Scholar 

  • Morazzani V, Chamarro M, Grosman A et al (1993) Partial oxidation of porous silicon by thermal process: study and structure of electronic defects. J Lumin 57:45–49

    Article  Google Scholar 

  • Pavlikov AV, Konstantinova EA, Timoshenko V (2011) Correlation between spin density and photoluminescence intensity in thermally oxidized porous silicon. Phys Status Solidi C 8:1928–1930

    Article  Google Scholar 

  • Poole CP, Horacio F (1987) Theory of magnetic resonance, 2nd edn. Wiley, New York

    Google Scholar 

  • Riikonen J, Salomaki M, Wonderen van J et al (2012) Surface chemistry, reactivity and pore structure of porous silicon oxidized by various methods. Langmuir 28:10573–10583

    Article  Google Scholar 

  • Rong FC, Harvey JF, Poindexter EH et al (1993) Nature of Pb-like dangling-orbital centers in luminescent porous silicon. Appl Phys Lett 63:920–922

    Article  Google Scholar 

  • Ruzzi M, Sartori E, Moscatelli A et al (2013) Time-resolved EPR study of singlet oxygen in the gas phase. J Phys Chem 117:5232–5240

    Article  Google Scholar 

  • Sanders GD, Chuang YC (1992) Theory of optical properties of quantum wires in porous silicon. Phys Rev B 45:9202–9213

    Article  Google Scholar 

  • Salonen J, Lehto VP, Laine E (1997) Thermal oxidation of free-standing porous silicon films. Appl Phys Lett 70:637–641

    Article  Google Scholar 

  • Salonen J, Lehto VP (2008) Fabrication and chemical surface modification of mesoporous silicon for biomedical applications. Chem Engin J 137:162–172

    Article  Google Scholar 

  • Schoisswohl M, Cantin JL, Von Bardeleben HJ et al (1995) Electron paramagnetic resonance study of luminescent stain etched porous silicon. Appl Phys Lett 66:3660–3662

    Article  Google Scholar 

  • Sharov CS, Konstantinova EA, Osminkina LA (2005) Chemical modification of a porous silicon surface induced by nitrogen dioxide adsorption. J Phys Chem B 109:4684–4693

    Article  Google Scholar 

  • Shih S, Jung KH, Hsieh TY et al (1992) Photoluminescence and formation mechanism of chemically etched silicon. Appl Phys Lett 60:1863–1865

    Article  Google Scholar 

  • Silsbee RH (1961) Electron spin resonance in neutron irradiated quartz. J Appl Phys 32:1459–1462

    Article  Google Scholar 

  • Slichter CP (1989) Principles of magnetic resonance, Springer series in solid state sciences, vol 1, 3rd edn. Springer, Berlin

    Google Scholar 

  • Spaeth J-M, Niklas JR, Bartram BH (1992) Structural analysis of point defects in solids, Springer series in solid state sciences, vol 43. Springer, Berlin

    Google Scholar 

  • Stesmans A, Scheerlinck F (1995) Electron-spin-resonance analysis of the natural intrinsic EX center in thermal SiO2 on Si. Phys Rev B 51:4987–4997

    Article  Google Scholar 

  • Timoshenko VY (2014) Porous silicon in photodynamic and photothermal therapy. In: Canham L (ed) Handbook of porous silicon. Springer, Heidelberg/New York/Dordrecht/London, pp 929–939

    Google Scholar 

  • Tinkham M, Strandberg MWP (1955) Interaction of molecular oxygen with a magnetic field. Phys Rev 97:951–966

    Article  Google Scholar 

  • Uchida Y, Koshida N, Koyama H et al (1993) Paramagnetic center in porous silicon: a dangling bond with C3v symmetry. Appl Phys Lett 63:961–963

    Article  Google Scholar 

  • Vahtras O, Loboda O, Minaev B et al (2002) Ab initio calculations of zero-field splitting parameters. Chem Phys 279:133–142

    Article  Google Scholar 

  • Van Gorp G, Stesmans A (1992) Dipolar interaction between [111] Pb defects at the (111) Si/SiO2 interface revealed by electron-spin resonance. Phys Rev B 45:4344–4347

    Article  Google Scholar 

  • Von Bardeleben HJ, Ortega C, Grosman A et al (1993a) Defect and structure analysis of n+-, p+- and p-type porous silicon by the electron paramagnetic resonance technique. J Lumin 57:301–313

    Article  Google Scholar 

  • Von Bardeleben HJ, Chamarro M, Grosman A et al (1993b) Pb centers and visible photoluminescence in porous silicon. J Lumin 57:39–43

    Article  Google Scholar 

  • Von Bardeleben HJ, Stievenard D, Grosman A et al (1993c) Defects in porous p-type Si: an electron-paramagnetic-resonance study. Phys Rev B 47:10899–10902

    Article  Google Scholar 

  • Xiao Y, McMahon TJ, Pankove JI et al (1994) Existence of a Pb1-like defect center in porous silicon. J Appl Phys 76:1759–1763

    Article  Google Scholar 

  • Young CF, Poindexter EH, Gerardi GJ (1997) Electron paramagnetic resonance of porous silicon: observation and identification of conduction-band electrons. J Appl Phys 81:7468–7470

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizaveta A. Konstantinova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Konstantinova, E.A. (2017). Characterization of Porous Silicon by EPR and ENDOR. In: Canham, L. (eds) Handbook of Porous Silicon. Springer, Cham. https://doi.org/10.1007/978-3-319-04508-5_121-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04508-5_121-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04508-5

  • Online ISBN: 978-3-319-04508-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics