Optical Characterization of Porous Silicon Multilayers

  • Ugur Cem Hasar
  • Ibrahim Yucel Ozbek
  • Tehvit Karacali
Living reference work entry

Abstract

Uncontrolled fabrication errors for multilayer porous silicon structures could in some circumstances significantly and unexpectedly change their optical properties (reflectivity, refractive index, etc.). Therefore, optical characterization of these structures gains prominent importance before using these structures for various applications such as optoelectronics and sensing. It is the aim of this short review to discuss the importance of optical characterization of multilayer porous silicon structures, by way of some numerical modeling and experimental results. We will thereby illustrate some important aspects about how the optical performance of these structures can be increased by following some simple precautions in their fabrication. It is also our objective in this review to bring some of the recent studies and trends in the subject of optical characterization to the attention of readers.

Keywords

Measurement Multilayered porous silicon Numerical analysis Optical characterization 

References

  1. Agarwal V, Mora-Ramos ME, Alvarado-Tenorio B (2009) Optical properties of multilayered period-doubling and Rudin-Shapiro porous silicon dielectric heterostructures. Photon Nanostruct Fundam Appl 7:63–68CrossRefGoogle Scholar
  2. Azzam RMA, Bashara NM (1989) Ellipsometry and polarized light. North Holland, AmsterdamGoogle Scholar
  3. Born M, Wolf E (1999) Principles of optics: electromagnetic theory of propagation, interference and diffraction of light. Cambridge University Press, Cambridge, UKCrossRefGoogle Scholar
  4. Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57:1046–1048CrossRefGoogle Scholar
  5. Canham LT (ed) (1997) Properties of porous silicon. IEE Inspec, LondonGoogle Scholar
  6. Charrier J, Dribek M (2010) Theoretical study on the factor of merit of porous silicon based optical biosensors. J Appl Phys 107:044905CrossRefGoogle Scholar
  7. Cho S-Y, Lee K-W, Kim J-W, Kim D-H (2013) Rugate-structured free-standing porous silicon-based fiber-optic sensor for the simultaneous detection of pressure and organic gases. Sensors Actuators B Chem 183:428–433CrossRefGoogle Scholar
  8. Cullis AG, Canham LT (1991) Visible light emission due to quantum size effects in highly porous crystalline silicon. Nature 353:335–338CrossRefGoogle Scholar
  9. Escorcia-Garcia J, Martinez OS, Gracia-Jimenez JM, Agarwal V (2009) Porous silicon photonic devices using pulsed anodic etching of lightly doped silicon. J Phys D Appl Phys 42:145101–145108CrossRefGoogle Scholar
  10. Ghulinyan M et al (2003a) Free-standing porous silicon single and multiple optical cavities. J Appl Phys 93:9724–9729CrossRefGoogle Scholar
  11. Ghulinyan M et al (2003b) Porous silicon free-standing coupled microcavities. Appl Phys Lett 82:1550–1552CrossRefGoogle Scholar
  12. Hasar UC et al (2012) The effect of silicon loss and fabrication tolerance on spectral properties of porous silicon Fabry-Perot cavities in sensing applications. Opt Express 20:22208–22223CrossRefGoogle Scholar
  13. Hasar UC et al (2015a) Identification of gases by porous optical sensors using reflectivity difference and wavelength shift. IEEE Photon Technol Lett 27:596–599CrossRefGoogle Scholar
  14. Hasar UC et al (2015b) Characterization of porous silicon Fabry-Perot optical sensors for reflectivity and transmittivity measurements. IEEE J Sel Topics Quantum Electron 21:2900110Google Scholar
  15. James TD, Keating AJ, Parish G, Musca CA (2009) Pulsed anodization for control of porosity gradients and interface roughness in porous silicon. J Electrochem Soc 156:H744–H750CrossRefGoogle Scholar
  16. Jylha L, Sihvola A (2007) Equation for the effective permittivity of particle-filled composites for material design applications. J Phys D Appl Phys 40:4966–4973CrossRefGoogle Scholar
  17. Karacali T, Alanyalioglu M, Efeoglu H (2009) Single and double Fabry-Perot structure based on porous silicon for chemical sensors. IEEE Sensors J 9:1667–1672CrossRefGoogle Scholar
  18. Karacali T et al (2013) Novel design of porous silicon based sensor for reliable and feasible chemical gas vapor detection. J Lightwave Technol 31:295–305CrossRefGoogle Scholar
  19. Liu J, Sun Y, Fan X (2009) Highly versatile fiber-based optical Fabry-Perot gas sensor. Opt Exp 17:2731–2738CrossRefGoogle Scholar
  20. Lorenzo E et al (2005) Porous silicon-based rugate filters. Appl Opt 44:5415–5421CrossRefGoogle Scholar
  21. Moretti L et al (2006) Photonic band gaps analysis of Thue-Morse multilayers made of porous silicon. Opt Express 14:6264–6272CrossRefGoogle Scholar
  22. Ouyang H, Striemer CC, Fauchet PM (2006) Quantitative analysis of the sensitivity of porous silicon optical biosensors. Appl Phys Lett 88:163108CrossRefGoogle Scholar
  23. Palavicini A, Wang C (2013) Infrared transmission in porous silicon multilayers. Opt Photon J 3:20–25CrossRefGoogle Scholar
  24. Pavesi L (1997) Porous silicon dielectric multilayers and microcavities. La Rivista del Nuovo Cimento 20:1–76CrossRefGoogle Scholar
  25. Pelant I, Valenta J (2012) Luminescence spectroscopy of semiconductors. Oxford University Press Inc., New YorkCrossRefGoogle Scholar
  26. Pérez EX (2007) Design, fabrication and characterization of porous silicon multilayer optical devices. Ph. D. Thesis, Universitat Rovira I VirgiliGoogle Scholar
  27. Saarinen JJ et al (2008) Reflectance analysis of a multilayer one-dimensional porous silicon structure: theory and experiment. J Appl Phys 104:013103CrossRefGoogle Scholar
  28. Sailor MJ (2012) Porous silicon in practice: preparation, characterization and applications. Wiley, WeinheimGoogle Scholar
  29. Setzu S, Ferrand P, Romenstain R (2000) Optical properties of multilayers porous silicon. Mater Sci Eng B 69-70:34–42CrossRefGoogle Scholar
  30. Snow PA, Squire EK, Russell PSJ, Canham LT (1999) Vapor sensing using the optical properties of porous silicon Bragg mirrors. J Appl Phys 86:1781–1784CrossRefGoogle Scholar
  31. Suarez I, Chirvony V, Hill D, Martinez-Pastor J (2011) Simulation of surface-modified porous silicon photonic crystals for biosensing applications. Photon Nanostruct: Fundam Appl 9:304–311Google Scholar
  32. Thonissen M, Berger MG (1997) Multilayer structures of porous silicon. In: Canham LT (ed) Properties of porous silicon. INSPEC Publications, London, p 35Google Scholar
  33. Tompkins HG, McGahan WA (1999) Spectroscopic ellipsometry and reflectometry: a user’s guide. Wiley, LondonGoogle Scholar
  34. Torres-Costa V, Martin-Palma RJ, Martinez-Duart JM (2004) Optical constants of porous silicon films and multilayers determined by genetic algorithms. J Appl Phys 96:4197–4203CrossRefGoogle Scholar
  35. Yan D et al (2014) Electrochemical deposition of ZnO nanostructures onto porous silicon and their enhanced gas sensing to NO2 at room temperature. Electrochim Acta 115:297–305CrossRefGoogle Scholar
  36. Zangooie S et al (2001) Infrared ellipsometry characterization of porous silicon Bragg reflectors. Appl Opt 40:906–912CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ugur Cem Hasar
    • 1
  • Ibrahim Yucel Ozbek
    • 2
  • Tehvit Karacali
    • 2
  1. 1.Department of Electrical and Electronics Engineering, Gaziantep UniversityGaziantepTurkey
  2. 2.Department of Electrical and Electronics EngineeringAtatürk UniversityErzurumTurkey

Personalised recommendations