Coronal Mass Ejections

  • Maher A. DayehEmail author
Reference work entry


Coronal mass ejections (CMEs) are the most energetic solar phenomena in the inner heliosphere. CMEs are large structures of magnetized plasma that move away from the Sun into the interplanetary (IP) space, driven by the magnetic forces at the Sun. Solar energetic particles (SEPs) and geomagnetic storms are two primary CME consequences that drive space weather on and near Earth. This chapter summarizes current established knowledge of CME properties and their space weather consequences.


Coronal mass ejections Solar wind Interplanetary coronal mass ejections Interplanetary shocks Geomagnetic storms Solar energetic particles Space weather 



The author would like to thank Heather Elliott for her constructive comments on the manuscript. This work was supported in part by NASA Award No. NNX13AE07G.


  1. Aschwanden‬ M (2006) Physics of the solar corona: an introduction with problems and solutions. Springer, BerlinGoogle Scholar
  2. Bastian TS, Pick M, Kerdraon A, Maia D, Vourlidas A (2001) The coronal mass ejection of 1998 April 20: direct imaging at radio wavelengths. Astrophys J Lett 558:L65–L69CrossRefGoogle Scholar
  3. Biesecker DA, Myers DC, Thompson BJ, Hammer DM, Vourlidas A (2002) Solar phenomena associated with ‘EIT Waves’. Astrophys J 569:1009CrossRefGoogle Scholar
  4. Cargill PJ, Harra LK (2007) Coronal mass ejections. In: Kamide Y, Chian AL-C (eds) Handbook of the solar- terrestrial environment. Springer, BerlinGoogle Scholar
  5. Chian ACL, Kamide Y (2007) An Overview of the Solar–Terrestrial Environment, In: Kamide Y, Chian AL-C (eds) Handbook of 390 the solar- terrestrial environment. Springer, BerlinGoogle Scholar
  6. Gopalswamy N (2006) Coronal mass ejections of cycle 23. J Astrophys Astron 27:243CrossRefGoogle Scholar
  7. Gopalswamy N (2009) Coronal mass ejection and space weather. In: Tsuda T, Fujii R, Shibata K, Geller MA (eds) Climate and Weather of the Sun-Earth System (CAWSES): selected papers from the 2007 Kyoto symposium. pp 77–120Google Scholar
  8. Gopalswamy N, Yashiro S, Krucker S, Stenborg G, Howard RA (2004) Intensity variation of large solar energetic particle events associated with coronal mass ejections. J Geophys Res 109:A12105CrossRefGoogle Scholar
  9. Gopalswamy N, Yashiro S, Liu Y et al (2005) Coronal mass ejections and other extreme characteristics of the 2003 October-November solar eruptions. J Geophys Res 110:9Google Scholar
  10. Gopalswamy N, Mikić Z, Maia D, Alexander D, Cremades H, Kaufmann P, Tripathi D, Wang Y-M (2006) The pre-CME sun in coronal mass ejections. Space Sciences Series of ISSI, 21Google Scholar
  11. Gopalswamy N, Yashiro S, Akiyama S (2007) Geoeffectiveness of halo coronal mass ejections. J Geophys Res 112:A06112Google Scholar
  12. Gopalswamy N, Akiyama S, Yashiro S, Makela P (2010a) Coronal mass ejections from sunspot and non-sunspot regions. In: Hasan SS, Rutten RJ (eds) Magnetic coupling between the interior and the atmosphere of the Sun, Astrophysics and space science proceedings. Springer, Berlin/Heidelberg, pp 289–307CrossRefGoogle Scholar
  13. Gopalswamy N (2010b) Corona mass ejections: a summary of recent results. In: Proceedings of the 20th National Solar Physics Meeting, held 31 May – 4 June, 2010 in Papradno, Slovakia, pp 108–130Google Scholar
  14. Gosling JT (1993) The solar flare myth. J Geophys Res 98:949Google Scholar
  15. Howard TA (2011) Coronal mass ejections: an introduction, astrophysics and space science library. Springer, New YorkCrossRefGoogle Scholar
  16. Hudson HS, Bougeret J-L, Burkepile J (2006) Coronal mass ejections: overview of the observations. Space Sci Rev 123:13CrossRefGoogle Scholar
  17. Hundhausen AJ (1993) Sizes and locations of coronal mass ejections: SMM observations from 1980 and 1984–1989. J Geophys Res 98(A8):13177–13200CrossRefGoogle Scholar
  18. Hundhausen AJ (1999) Coronal mass ejections. In: Strong KT, Saba JLR, Haisch BM, Schmelz JT (eds) The many faces of the sun: a summary of the results from NASA’s solar maximum mission. Springer, New York, p 143CrossRefGoogle Scholar
  19. Kallenrode M-B (2003) Current views on impulsive and gradual solar energetic particle events. J Phys G Nucl Part Phys 29(5):965–981CrossRefGoogle Scholar
  20. Lanzerotti J (2007) Space weather. In: Kamide Y, Chian AL-C (eds) Handbook of the solar-terrestrial environment. Berlin, SpringerGoogle Scholar
  21. Low BC (1996) Solar activity and the corona. Sol Phys 167(1–2):217–265CrossRefGoogle Scholar
  22. Mierla M, Inhester B, Antunes A, Boursier Y, Byrne et al (2010) On the 3-D reconstruction of coronal mass ejections using coronagraph data. Ann Geophys 28:203–215CrossRefGoogle Scholar
  23. Moreton GE, Ramsey HE (1960) Recent observations of dynamical phenomena associated with solar flares. Publ Astron Soc Pac 72:357CrossRefGoogle Scholar
  24. Plunkett SP, Vourlidas A, ˇSimberov’a S, Karlick’y M, Kotrˇc P, Heinzel P, Kupryakov YA, Guo WP, Wu ST (2000) Simultaneous SOHO and ground-based observations of a large eruptive prominence and coronal mass ejection. Solar Phys 194:371–391CrossRefGoogle Scholar
  25. Prakash O, Umapathy S, Shanmugaraju A, Pappa kalaivani P, Vršnak B (2012) Characteristics of DH type II bursts, CMEs and flares with respect to the acceleration of CMEs. Astrophys Space Sci 337(1):47–64CrossRefGoogle Scholar
  26. Reames DV (2013) The two sources of solar energetic particles. Space Sci Rev 175, pp 53–92Google Scholar
  27. Russell CT (2000) The solar wind interaction with the Earth’s magnetosphere: a tutorial. IEEE Trans Plasma Sci 28, 1818–1830Google Scholar
  28. Schwenn R (2006) Space weather: the solar perspective, 2006. Living Rev Solar Phys 3:2, Url:, visited January 2014
  29. Sheeley NR Jr, Walters JH, Wang Y-M, Howard RA (1999) Continuous tracking of coronal outflows: two kinds of coronal mass ejections. J Geophys Res 104:24739–24768CrossRefGoogle Scholar
  30. St Cyr OC, Plunkett SP, Michels DJ, Paswaters SE, Koomen MJ, Simnett GM, Thompson BJ, Gurman JB, Schwenn R, Webb DF, Hildner E, Lamy PL (2000) Properties of coronal mass ejections: SOHO LASCO observations from January 1996 to June 1998. J Geophys Res 105(A8):18169–18185CrossRefGoogle Scholar
  31. Thompson BJ, Myers DC (2009) A catalog of coronal ‘EIT wave’ transients. Astrophys J Suppl Ser 183:225CrossRefGoogle Scholar
  32. Vourlidas A, Howard RA, Morill JS, Munz S (2002) Analysis of LASCO streamer blowout events. In: Wang H, Xu RL (eds) Solar-terrestrial magnetic activity and space environment, Proceedings of the COSPAR Colloquium held in the NAOC in Beijing, China, September 10–12, 2001, vol 14 of COSPAR Colloquia Series. Pergamon, Amsterdam, Boston, pp 201–208Google Scholar
  33. Vourlidas A, Howard RA, Esfandiari E, Patsourakos S, Yashiro S, Michalek G (2010) Comprehensive analysis of coronal mass ejection mass and energy properties over a full solar cycle. Astrophys J 722:1522–1538CrossRefGoogle Scholar
  34. Webb DF, Howard TA (2012) Coronal mass ejections: observations. Living Rev Phys 9:3, url:, visited January 2014
  35. Wimmer-Schweingruber (2005) Interplanetary disturbances. Lect Notes Phys 656:71–129, SpringerGoogle Scholar
  36. Yashiro S, Gopalswamy N, Michalek G, St Cyr OC, Plunkett SP, Rich NB, Howard RA (2004) A catalog of white light coronal mass ejections observed by the SOHO spacecraft. J Geophys Res 109:A07105Google Scholar
  37. Yashiro S, Gopalswamy N, Akiyama S, Michalek G, Howard RA (2005) Visibility of coronal mass ejections as a function of flare location and intensity. J Geophys Res 110:A12S05CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Space Science and Engineering DivisionSouthwest Research InstituteSan AntonioUSA

Personalised recommendations