Skip to main content

Deep Impact and Related Missions

  • Reference work entry
  • 2152 Accesses

Abstract

This chapter reviews the history of and the results from the Deep Impact mission, its extension as the EPOXI mission, and its further extension as a remote observatory for cometary studies. The mission has had a major impact on the understanding of comets and on their role in solar system formation. It has also provided considerable information needed for planetary defense against Near-Earth Objects (NEOs).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   649.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   799.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • A’Hearn MF (2008) Deep impact and the origin and evolution of cometary nuclei. Space Sci Rev 138:237–246

    Article  Google Scholar 

  • A’Hearn MF, Belton MJS (2005) Deep impact: a large-scale active experiment on a cometary nucleus. Space Sci Rev 117:1–21

    Article  Google Scholar 

  • A’Hearn MF, Belton MJS, Delamere WA, Kissel J, Klaasen KP et al (2005) Deep impact: excavating comet temple 1. Science 310:258–264

    Article  Google Scholar 

  • A’Hearn MF, Belton MJS, Delamere WA, Feaga LM, Hampton D et al (2011) EPOXI at Comet Hartley 2. Science 332:1396–1400

    Article  Google Scholar 

  • A’Hearn MF, Feaga LM, Keller HU, Kawakita H, Hampton DL et al (2012) Cometary volatiles and the origin of comets. Astrophys J 758:29 (8 pp)

    Article  Google Scholar 

  • Belton MJS (2014) The size-distribution of scattered disk TNOs from that of JFCs between 0.2 and 15 km effective radius. Icarus 231:168–182

    Google Scholar 

  • Belton MJS, A’Hearn MF (1999) Deep sub-surface exploration of cometary nuclei. Adv Space Res 24:1167–1173

    Article  Google Scholar 

  • Belton MJS, Thomas P, Veverka J, Schultz P, Hearn A et al (2007) The internal structure of Jupiter family cometary nuclei from deep impact observations: the “Talps” or “Layered Pile” model. Icarus 187:332–344

    Article  Google Scholar 

  • Belton MJS, Thomas P, Li J-Y, Williams J, Carcich B et al (2013) The complex spin state of 103P/Hartley 2: kinematics and orientation in space. Icarus 222:595–609

    Article  Google Scholar 

  • Biver N, Bockelée-Morvan D, Boissier J, Crovisier J, Colom P et al (2007) Radio observations of Comet 9P/Tempel 1 before and after deep impact. Icarus 187:253–271

    Article  Google Scholar 

  • Blume WH (2005) Deep impact mission design. Space Sci Rev 117:23–42

    Article  Google Scholar 

  • Busko I, Lindler D, A’Hearn MF, White RL (2007) Searching for the deep impact crater on Comet 9P/Tempel 1 using image processing techniques. Icarus 187:56–68

    Article  Google Scholar 

  • Clarke AC (1968) 2001, A space Odyssey. Signet Books, New York (Chap 18)

    Google Scholar 

  • Ernst CM, Schultz PH (2007) Evolution of the deep impact flash: implications for the nucleus surface based on laboratory experiments. Icarus 190:334–344

    Article  Google Scholar 

  • Farnham TL, Bodewits D, Li J-Y, Veverka J, Thomas P et al (2013) Connections between the jet activity and surface features on Comet 9P/ Tempel 1. Icarus 222:540–549

    Article  Google Scholar 

  • Feaga LM, A’Hearn MF, Sunshine JM, Groussin O, Farnham TL (2007) Asymmetries in the distribution of H2O and CO2 in the inner Coma of Comet 9P/Tempel 1 as observed by deep impact. Icarus 190:345–356

    Article  Google Scholar 

  • Feaga LM, A’Hearn MF, Farnham TL, Bodewits D, Sunshine JM et al (2014) Uncorrelated volatile behavior during the 2011 apparition of Comet C/2009 P1 Garradd. Astron J 147:24

    Article  Google Scholar 

  • Hampton DL, Baer JW, Huisjen MA, Varner CC, Delamere A et al (2005) An overview of the instrument suite for the deep impact mission. Space Sci Rev 117:43–93

    Article  Google Scholar 

  • Harwit M (1984) Cosmic discovery: the search, scope, and heritage of astronomy. MIT Press, Cambridge, MA

    Google Scholar 

  • Hermalyn B, Farnham TL, Collins SM, Kelley MS, A’Hearn MF et al (2013) The detection, localization, and dynamics of large Icy particles surrounding Comet 103P/Hartley 2. Icarus 222:625–633

    Article  Google Scholar 

  • Holsapple KA, Housen KR (2007) A crater and its Ejecta: an interpretation of deep impact. Icarus 187:345–356

    Article  Google Scholar 

  • Keller HU, Küppers M, Fornasier S, Gutiérrez PJ, Hviid SF et al (2007) Observations of Comet 9P/Tempel 1 around the deep Impact event by the OSIRIS cameras onboard Rosetta. Icarus 187:87–103

    Article  Google Scholar 

  • Kelley MS, Lindler DJ, Bodewits D, A’Hearn MF, Lisse CM et al (2013) A distribution of large particles in the Coma of Comet 103P/Hartley 2. Icarus 222:634–652

    Article  Google Scholar 

  • Lindler DJ, A’Hearn MF, Besse S, Carcich B, Hermalyn B et al (2013) Interpretation of results of deconvolved images from the deep impact spacecraft high resolution instrument. Icarus 222:571–579

    Article  Google Scholar 

  • Mastrodemos N, Kubitschek DG, Synnott SP (2005) Autonomous navigation for the deep impact mission encounter with Comet Tempel 1. Space Sci Rev 117:95–121

    Article  Google Scholar 

  • Meech KJ, Kleyna J, Hainaut OR, Lowry SC, Fuse T et al (2013) The demise of Comet 85P/Boethin, the first EPOXI mission target. Icarus 222:662–678

    Article  Google Scholar 

  • Mommert M, Hora JL, Harris AW, Reach WT, Emery JP et al (2014) The discovery of cometary activity in Near-Earth asteroid (3552) Don Quixote. Astrophys J 781:25

    Article  Google Scholar 

  • NASA’s Planetary Data System (PDS). http://pds.nasa.gov/. Accessed July 2014

  • Ootsubo T, Kawakita H, Hamada S, Kobayashi H, Yamaguchi M et al (2012) AAKARI near-infrared spectroscopic survey for CO2 in 18 Comets. Astrophys J 752:15 (12pp)

    Article  Google Scholar 

  • Pieters CM, Goswami JN, Clark RN, Annadurai M, Boardman J et al (2009) Character and spatial distribution of OH/H2O on the surface of the moon seen by M3 on Chandrayaan-1. Science 326:568–572

    Article  Google Scholar 

  • Richardson JE, Melosh HJ (2013) An examination of the deep impact Collision site on Comet Tempel 1 via Stardust-NExT: placing further constraints on cometary surface properties. Icarus 222:492–501

    Article  Google Scholar 

  • Richardson JE, Melosh HJ, Lisse CM, Carcich B (2007) A ballistics analysis of the deep impact Ejecta plume: determining Comet Tempel 1’s gravity, mass, and density. Icarus 190:357–390

    Article  Google Scholar 

  • Schleicher DG, Barnes KL, Baugh NF (2006) Photometry and imaging results for Comet 9P/Tempel 1 and deep impact: gas production rates, Postimpact Light Curves, and Ejecta Plume Morphology. Astron J 131:1130–1137

    Article  Google Scholar 

  • Schultz PH, Hermalyn B, Veverka J (2013) The deep impact crater on 9P/Tempel-1 from Stardust-NExT. Icarus 222:502–515

    Article  Google Scholar 

  • Small Bodies Node of PDS. http://pdssbn.astro.umd.edu/. Accessed July 2014

  • Sunshine JM, A’Hearn MF, Groussin O, Li J-Y, Belton MJS et al (2006) Exposed water ice deposits on the surface of Comet 9P/Tempel 1. Science 311:1453–1455

    Article  Google Scholar 

  • Sunshine JM, Farnham TL, Feaga LM, Groussin O, Merlin F et al (2009) Temporal and spatial variability of lunar hydration as observed by the deep impact spacecraft. Science 326:565–568

    Article  Google Scholar 

  • Veverka J, Klaasen K, A’Hearn M, Belton M, Brownlee D et al (2013) Return to Comet Tempel 1: overview of Stardust-NExT results. Icarus 222:424–435

    Article  Google Scholar 

  • Walsh KJ, Morbidelli A, Raymond SN, O’Brien DP, Mandell AM (2011) A low mass for Mars from Jupiter’s early gas-driven migration. Nature 475:206–209

    Article  Google Scholar 

  • Weaver HA, Feldman PD, A’Hearn MF, Dello Russo N, Stern SA (2011) The carbon monoxide abundance in Comet 103P/Hartley 2 During the EPOXI Flyby. Astrophys J Lett 734:L5

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. A’Hearn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland (outside the USA)

About this entry

Cite this entry

A’Hearn, M.F., Johnson, L.N. (2015). Deep Impact and Related Missions. In: Pelton, J., Allahdadi, F. (eds) Handbook of Cosmic Hazards and Planetary Defense. Springer, Cham. https://doi.org/10.1007/978-3-319-03952-7_43

Download citation

Publish with us

Policies and ethics