Advertisement

Microbial of Extracellular Polysaccharide Production from Biomass Sources

Living reference work entry

Latest version View entry history

Abstract

The interest in bio-based polymers, especially extracellular polysaccharides (EPSs), has increased considerably in recent years due to their useful physicochemical and rheological properties and diverse functionality. Microbial polysaccharides have many commercial applications in different industrial sectors like chemical, food, petroleum, health, and bionanotechnology. Although microbial EPS production processes are regarded as environmentally friendly and in full compliance with the biorefinery concept, EPSs constitute only a minor fraction of the current polymer market due to their cost-intensive production and recovery. For that reason, much effort has been spent to the development of cost-effective production processes by using cheaper fermentation substrates such as low-cost biomass resources. These resources are generally either in liquid form like syrups, molasses, juices, cheese whey, and olive mill wastewater or solid-like lignocellulosic biomass and pomaces. In this chapter, after a brief description of microbial polysaccharides, submerged and solid-state fermentation processes utilizing cheap biomass resources are discussed with a special focus on the microbial production of EPSs with high market value.

Keywords

EPS Microbial exopolysaccharides Polysaccharides Biomass resources Fermentation 

Notes

Acknowledgments

The financial support provided by TUBITAK through project 111M232 is gratefully acknowledged.

References

  1. Abdel Hafez AM, Abdelhady HM, Sharaf MS, El-Tayeb TS (2007) Bioconversion of various industrial by – products and agricultural wastes into pullulan. J Appl Sci Res 3(11):1416–1425Google Scholar
  2. Abdel-Aziz SM, Hamed HA, Mouafi FE (2012a) Acidic exopolysaccharide flocculant produced by the fungus Mucor rouxii using beet-molasses. Res Biotechnol 3(6):01–13Google Scholar
  3. Abdel-Aziz SM, Hamed HA, Mouafi FE, Gad AS (2012b) Acidic pH-shock induces the production of an exopolysaccharide by the fungus Mucor rouxii: utilization of beet-molasses. N Y Sci J 5(2):52–61Google Scholar
  4. Aguilera M, Quesada MT, Aguila VG, Morillo JA, Rivadeneyra MA, Romos-Cormenzana A, Monteoliva-Sanchez M (2008) Characterization of Paenibacillus jamilae strains that produce exopolysaccharide during growth on and detoxification of olive mill wastewaters. Bioresour Technol 99:5640–5644PubMedCrossRefGoogle Scholar
  5. Ateş Ö, Toksoy Öner E, Arga KY (2011) Genome-scale reconstruction of metabolic network for a halophilic extremophile, Chromohalobacter salexigens DSM 3043. BMC Syst Biol 5:12PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ateş Ö, Arga KY, Toksoy Öner E (2013) The stimulatory effect of mannitol on levan biosynthesis: lessons from metabolic systems analysis of Halomonas smyrnensis AAD6(T). Biotechnol Prog 29:1386–1397PubMedCrossRefGoogle Scholar
  7. Aydınoğlu T, Sargın S (2013) Production of laccase from Trametes versicolor by solid-state fermentation using olive leaves as a phenolic substrate. Bioprocess Biosyst Eng 36:215–222PubMedCrossRefGoogle Scholar
  8. Bajaj IB, Survase SA, Saudagar PS, Singhal RS (2007) Gellan gum: fermentative production, downstream processing and applications. Food Technol Biotechnol 45:341–354Google Scholar
  9. Banik RM, Santhiagu A, Upadhyay SN (2007) Optimization of nutrients for gellan gum production by Sphingomonas paucimobilis ATCC-31461 in molasses based medium using response surface methodology. Bioresour Technol 98:792–797PubMedCrossRefPubMedCentralGoogle Scholar
  10. Bench SR, Heller P, Frank I, Arciniega M, Shilova IN, Zehr JP (2013) Whole genome comparison of six Crocosphaera watsonii strains with differing phenotypes. J Phycol 49:786–801PubMedPubMedCentralCrossRefGoogle Scholar
  11. Briczinski EP, Roberts RF (2002) Production of an exopolysaccharide-containing whey, protein concentrate by fermentation of whey. J Dairy Sci 85(12):3189–3197PubMedCrossRefPubMedCentralGoogle Scholar
  12. Chen HB, Chen CI, Chen MJ, Lin CC, Kan SC, Zang CZ, Yeh CW, Shieh CJ, Liu YC (2013) The use of mushroom hydrolysate from waste bag-log as the nitrogen source to mycelium biomass and exopolysaccharide production in Pleurotus eryngii cultivation. Journal of the Taiwan Institute of Chemical Engineers 44:163–168CrossRefGoogle Scholar
  13. Cheng KC, Demirci A, Catchmark JM (2011) Pullulan: biosynthesis, production, and applications. Appl Microbiol Biotechnol 92:29–44PubMedCrossRefPubMedCentralGoogle Scholar
  14. Choudhury AR, Sharma N, Prasad GS (2012) Deoiled jatropha seed cake is a useful nutrient for pullulan production. Microb Cell Factories 11:39CrossRefGoogle Scholar
  15. Crognale S, Federici F, Petruccioli M (2003) Beta-Glucan production by Botryosphaeria rhodina on undiluted olive-mill wastewaters. Biotechnol Lett 25:2013–2015PubMedCrossRefPubMedCentralGoogle Scholar
  16. Cuthbertson L, Mainprize IL, Naismith JH, Whitfield C (2009) Pivotal roles of the outer membrane polysaccharide export and polysaccharide copolymerase protein families in export of extracellular polysaccharides in gram-negative bacteria. Microbiol Mol Biol Rev 73(1):155–177PubMedPubMedCentralCrossRefGoogle Scholar
  17. Donot F, Fontana A, Baccou JC, Schorr-Galindo S (2012) Microbial exopolysaccharides: main examples of synthesis, excretion, genetics and extraction. Carbohydr Polym 87:951–962CrossRefGoogle Scholar
  18. Doran PM (1995) Bioprocess engineering principles. Elsevier Science & Technology Books, Sydney, pp 333–392CrossRefGoogle Scholar
  19. Fang Y, Ahmed Y, Liu S, Wang Sa LM, Jiao Y (2013) Optimization of antioxidant exopolysaccharides production by Bacillus licheniformis in solid state fermentation. Carbohydr Polym 98:1377–1382PubMedCrossRefPubMedCentralGoogle Scholar
  20. Fava F, Totaro G, Diels L, Reis M, Duarte J, Carioca JB, Poggi-Varaldo HM, Ferreira BS (2013) Biowaste biorefinery in Europe: opportunities and research & development needs. New Biotechnol. http://www.sciencedirect.com/science/article/pii/S1871678413001581#Google Scholar
  21. Fazli M, Almblad H, Rybtke ML, Givskov M, Eberl L, Tolker-Nielsen T (2014) Regulation of biofilm formation in Pseudomonas and Burkholderia species. J Immunol Environ Microbiol.  https://doi.org/10.1111/1462-2920.12448CrossRefGoogle Scholar
  22. Fialho AM, Martins LO, Donval ML, Leitao JH, Ridout MJ, Jay AJ, Morris VJ, Corria I (1999) Structures and properties of gellan polymers produced by Sphingomonas paucimobilis ATCC 31461 from lactose compared with those produced from glucose and from cheese whey. Appl Environ Microb 65:2485–2491Google Scholar
  23. Fosmer A, Gibbons W (2011) Separation of scleroglucan and cell biomass from Sclerotium glucanicum grown in an inexpensive, by-product based medium. Int J Agric Biol Eng 4:52–60Google Scholar
  24. Fosmer A, Gibbons WR, Heisel NJ (2010) Reducing the cost of scleroglucan production by use of a condensed corn soluble medium. J Biotechnol Res 2:131–143Google Scholar
  25. Franklin MJ, Nivens DE, Weadge JT, Howell PL (2011) Biosynthesis of the Pseudomonas aeruginosa extracellular polysaccharides, alginate, Pel, and Psl. Front Microbiol 2:167PubMedPubMedCentralCrossRefGoogle Scholar
  26. Freitas F, Alves VD, Reis MAM (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29:388–398PubMedCrossRefPubMedCentralGoogle Scholar
  27. Gaona G, Nunez C, Goldberg JB, Linford AS, Najera R, Castaneda M, Guzman J, Espin G, Soberon-Chavez G (2004) Characterization of the Azotobacter vinelandii algC gene involved in alginate and lipopolysaccharide production. FEMS Microbiol Lett 238:199–206PubMedPubMedCentralGoogle Scholar
  28. Garg N, Manchanda G, Kumar A (2014) Bacterial quorum sensing: circuits and applications. Antonie Van Leeuwenhoek 105(2):289–305PubMedCrossRefPubMedCentralGoogle Scholar
  29. Göksungur Y, Uçan A, Güvenç U (2004) Production of pullulan from beet molasses and synthetic medium by Aureobasidium pullulans. Turk J Biol 28:23–30Google Scholar
  30. Gunasekar V, Reshma KR, Treesa G, Gowdhaman D, Ponnusami V (2014) Xanthan from sulphuric acid treated tapioca pulp: influence of acid concentration on xanthan fermentation. Carbohydr Polym 102:669–673PubMedCrossRefPubMedCentralGoogle Scholar
  31. Han YW, Watson MA (1992) Production of microbial levan from sucrose, sugarcane juice and beet molasses. J Ind Microbiol 9:257–260CrossRefGoogle Scholar
  32. Hay ID, Gatland K, Campisano A, Jordens JZ, Rehm BHA (2009) Impact of alginate overproduction on attachment and biofilm architecture of a supermucoid Pseudomonas aeruginosa strain. Appl Environ Microbiol 75:6022–6025PubMedPubMedCentralCrossRefGoogle Scholar
  33. Hay ID, Ur Rehman Z, Ghafoor A, Rehm BHA (2010) Bacterial biosynthesis of alginates. J Chem Technol Biotechnol 85:752–759CrossRefGoogle Scholar
  34. Hay ID, Wang Y, Moradali MF, Rehman ZU, Rehm BHA (2014) Genetics and regulation of bacterial alginate production. Environ Microbiol.  https://doi.org/10.1111/1462-2920.12389CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hidalgo-Cantabrana C, Sánchez B, Milani C, Ventura M, Margolles A, Ruas-Madiedo P (2013) Exopolysaccharide biosynthesis in Bifidobacterium spp.: biological functions and a genomic overview. Appl Environ Microbiol.  https://doi.org/10.1128/AEM.02977-13CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hungund B, Prabhu S, Shetty C, Acharya S, Prabhu V, Gupta SG (2013) Production of bacterial cellulose from Gluconacetobacter persimmonis GH-2 using dual and cheaper carbon sources. J Microb Biochem Technol 5:2Google Scholar
  37. Isikhuemhen OS, Mikiashvili NA, Adenipekun CO, Ohimain EI, Shahbazi G (2012) The tropical white rot fungus, Lentinus squarrosulus Mont.: lignocellulolytic enzymes activities and sugar release from cornstalks under solid state fermentation. World J Microbiol Biotechnol 28:1961–1966PubMedCrossRefPubMedCentralGoogle Scholar
  38. Israilides CJ, Smith A, Harthill JE, Barnett C, Bambalov G, Scanlon B (1998) Pullulan content of the ethanol precipitate from fermented agro-industrial wastes. Appl Microbiol Biotechnol 49:613–617CrossRefGoogle Scholar
  39. Jin H, Lee NK, Shin MK, Kim SK, Kaplan DL, Lee JW (2003) Production of gellan gum by Sphingomonas paucimobilis NK2000 with soybean pomace. Biochem Eng J 16:357–360CrossRefGoogle Scholar
  40. Jones SE, Paynich ML, Kearns DB, Knight KL (2014) Protection from intestinal inflammation by bacterial exopolysaccharides. J Immunol 198:4813–4820PubMedPubMedCentralCrossRefGoogle Scholar
  41. Kalogiannis S, Iakovidou G, Liakopoulou-Kyriakides M, Kyriakidis DA, Skaracis GN (2003) Optimization of xanthan gum production by Xanthomonas campestris grown in molasses. Process Biochem 39:249–256CrossRefGoogle Scholar
  42. Kang SA, Jang K-H, Seo J-W, Kim KH, Kim YH, Rairakhwada D, Seo MY, Lee JO, Ha SD, Kim C-H, Rhee S-K (2009) Levan: applications and perspectives. In: Rehm BHA (ed) Microbial production of biopolymers and polymer precursors. Academic, CaisterGoogle Scholar
  43. Kaur S, Dhillon GS, Sarma SJ, Brar SK, Misra K, Oberoi HS (2014) Waste biomass: a prospective renewable resource for development of bio-based economy/processes. In: Brar et al. (eds) Biotransformation of waste biomass into high value biochemicals. Springer New York Heidelberg Dordrecht, London, pp 3–28Google Scholar
  44. Kenyon WJ, Buller CS (2002) Structural analysis of the curdlan-like exopolysaccharide produced by Cellulomonas flavigena KU. J Ind Microbiol Biotechnol 29:200–203CrossRefGoogle Scholar
  45. Kreyenschulte D, Krull R, Margaritis A (2014) Recent advances in microbial biopolymer production and purification. Crit Rev Biotechnol 34(1):1–15.  https://doi.org/10.3109/07388551.2012.743501CrossRefPubMedPubMedCentralGoogle Scholar
  46. Küçükaşık F, Kazak H, Güney D, Finore I, PoliA YO, Nicolaus B, Toksoy Öner E (2011) Molasses as fermentation substrate for levan production by Halomonas sp. Appl Microbiol Biotechnol 89:1729–1740PubMedCrossRefPubMedCentralGoogle Scholar
  47. Kumar AS, Mody K, Jha B (2007) Bacterial exopolysaccharides – a perception. J Basic Microbiol 47:103–117PubMedCrossRefPubMedCentralGoogle Scholar
  48. Kurbanoglu EB, Kurbanoglu NI (2007) Ram horn hydrolysate as enhancer of xanthan production in batch culture of Xanthomonas campestris EBK-4 isolate. Process Biochem 42:1146–1149CrossRefGoogle Scholar
  49. Lazaridou A, Biliaderis CG, Roukas T, Izydorczyk M (2002) Production and characterization of pullulan from beet molasses using a nonpigmented strain of Aureobasidium pullulans in batch culture. Appl Biochem Biotechnol 97:1–22PubMedCrossRefPubMedCentralGoogle Scholar
  50. Leathers TD, Gupta SC (1994) Production of pullulan from fuel ethanol by-products by Aureobasidium sp. strain NRRLY-12974. Biotechnol Lett 16:1163–1166CrossRefGoogle Scholar
  51. Lin D, Lopez-Sanchez P, Li R, Li Z (2014) Production of bacterial cellulose by Gluconacetobacter hansenii CGMCC 3917 using only waste beer yeast as nutrient source. Bioresour Technol 151:113–119PubMedCrossRefPubMedCentralGoogle Scholar
  52. Lopez MJ, Ramos-Cormenzana A (1996) Xanthan production from olive mill wastewaters. Int Biodeter Biodegr 59:263–270CrossRefGoogle Scholar
  53. Lopez MJ, Moreno J, Ramos-Cormenzana A (2001a) The effect of olive mill wastewaters variability on xanthan production. J Appl Microbiol 90:829–835PubMedCrossRefPubMedCentralGoogle Scholar
  54. Lopez MJ, Moreno J, Ramos-Cormenzana A (2001b) Xanthomonas campestris strain selection for xanthan production from olive mill wastewaters. Water Res 35:1828–1830PubMedCrossRefPubMedCentralGoogle Scholar
  55. Mann EE, Wozniak DJ (2012) Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev.  https://doi.org/10.1111/j.1574-6976.2011.00322.xCrossRefPubMedPubMedCentralGoogle Scholar
  56. Mantzavinos D, Kalogerakis N (2005) Treatment of olive mill effluents: part I. Organic matter degradation by chemical and biological processes – an overview. Environ Int 31:289–295PubMedCrossRefPubMedCentralGoogle Scholar
  57. Matsushita M (1990) Curdlan, a (1-3)-beta-D-glucan from Alcaligenes faecalis var. myxogenes IFO13140, activates the alternative complement pathway by heat treatment. Immunol Lett 26:95–97PubMedCrossRefPubMedCentralGoogle Scholar
  58. Mikiashvili NA, Isikhuemhen OS, Ohimain EI (2011) Lignin degradation, ligninolytic enzymes activities and exopolysaccharide production by Grifola frondosa strains cultivated on oak sawdust. Braz J Microbiol 42:1101–1108CrossRefGoogle Scholar
  59. Mitchell DA, Krieger N (2006) In: Beravic M (ed) Solid-state fermentation bioreactors. Springer, Berlin, pp 1–2CrossRefGoogle Scholar
  60. Morillo JA, Aguilera M, Ramos-Cormenzana A, Monteoliva-Sanchez M (2006) Production of a metal-binding exopolysaccharide by Paenibacillus jamilae using two-phase olive-mill waste as fermentation substrate. Curr Mıcrobiol 53:189–193PubMedCrossRefPubMedCentralGoogle Scholar
  61. Morillo JA, Antizar-Ladislao B, Monteoliva-Sánchez M, Ramos-Cormenzana A, Russell NJ (2009) Bioremediation and biovalorisation of olive-mill wastes. Appl Microbiol Biotechnol 82:25–39PubMedCrossRefPubMedCentralGoogle Scholar
  62. Moussa TAA, Khalil NM (2012) Solid-state fermentation for the production of dextran from Saccharomyces cerevisiae and its cytotoxic effects. Life Sci J 9(4):2210–2218Google Scholar
  63. Muhammadi, Afzal M (2014) Optimization of water absorbing exopolysaccharide production on local cheap substrates by Bacillus strain CMG1403 using one variable at a time approach. J Microbiol 52(1):44–52CrossRefGoogle Scholar
  64. Nasab MM, Yousefi A (2011) Biotechnological production of cellulose by Gluconacetobacter xylinus from agricultural waste. Iran J Biotechnol 9(2):94–101Google Scholar
  65. Nasab MM, Shekarıpour F, Alıpoor M (2009) Use of date syrup as agricultural waste for xanthan production by Xanthomonas campestris. Iran Agric Res 28(1):89–98Google Scholar
  66. Nasab MM, Gavahian M, Yousefi AR, Askari H (2010a) Fermentative production of dextran using food industry wastes. World Acad Sci, Eng Technol 4:1017–1019Google Scholar
  67. Nasab MM, Pashangeh S, Rafsanjani M (2010b) Effect of fermentation time on xanthan gum production from sugar beet molasses. World Acad Sci Eng Technol 4:1020–1023Google Scholar
  68. Nicolaus B, Kambourova M, Toksoy Öner E (2010) Exopolysaccharides from extremophiles: from fundamentals to biotechnology. Environ Technol 31:1145–1158PubMedCrossRefPubMedCentralGoogle Scholar
  69. Oliveira MR, da Silva RSSF, Buzato JB, Celligoi MAPC (2007) Study of levan production by Zymomonas mobilis using regional low-cost carbohydrate sources. Biochem Eng J 37:177–183CrossRefGoogle Scholar
  70. Özcan E, Sargin S, Goksungur Y (2014) Comparison of pullulan production performances of air-lift and bubble column bioreactors and optimization of process parameters in air-lift bioreactor. Biochemical Engineering Journal (In Press)CrossRefGoogle Scholar
  71. Palaniraj A, Jayaraman V (2011) Production, recovery and applications of xanthan gum by Xanthomonas campestris. J Food Eng 106:1–12CrossRefGoogle Scholar
  72. Poli A, Donato PD, Abbamondi GR, Nicolaus B (2011) Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by Archaea, Hindawi Publishing Corporation, Article ID 693253, 13 pGoogle Scholar
  73. Pollock TJ (1993) Gellan-related polysaccharides and the genus Sphingomonas. J Gen Microbiol 139:1939–1945CrossRefGoogle Scholar
  74. Purama RK, Goswami P, Khan AT, Goyal A (2009) Structural analysis and properties of dextran produced by Leuconostoc mesenteroides NRRL B-640. Carbohydr Polym 76:30–35CrossRefGoogle Scholar
  75. Rabha B, Nadra RS, Ahmed B (2012) Effect of some fermentation substrates and growth temperature on exopolysaccharide production by Streptococcus thermophilus BN1. Int J Biosci Biochem Bioinformat 2(1):44–47Google Scholar
  76. Ramos-Cormenzana A, Monteoliva-Sánchez M, López MJ (1995) Bioremediation of alpechin. Int Biodeter Biodegr 35:249–268CrossRefGoogle Scholar
  77. Razack SA, Velayutham V, Thangavelu V (2013) Medium optimization for the production of exopolysaccharide by Bacillus subtilis using synthetic sources and agro wastes. Turk J Biol 37:280–288Google Scholar
  78. Rehm BHA (2005) Biosynthesis and applications of alginates. In: Wnek G, Bowlin G (eds) Encyclopedia of biomaterials and biomedical engineering. Dekker, New York, pp 1–9Google Scholar
  79. Rehm BHA (ed) (2009) Microbial production of biopolymers and polymer precursors: applications and perspectives. Caister Academic Press, NorfolkGoogle Scholar
  80. Riedel T, Spring S, Fiebig A, Petersen J, Kyrpides NC, Göker M, Klenk HP (2014) Genome sequence of the exopolysaccharide-producing Salipiger mucosus type strain (DSM 16094T), a moderately halophilic member of the Roseobacter clade. Stand Genomic Sci 9:3.  https://doi.org/10.4056/sigs.4909790CrossRefGoogle Scholar
  81. Roseiro JC, Costa DC, Collaco MTA (1992) Batch and fed-cultivation of Xanthomonas campestris in carob extracts. Food Sci Technol-Lebensm-Wiss Technol 25:289–293Google Scholar
  82. Roukas T (1998) Pretreatment of beet molasses to increase pullulan production. Process Biochem 33:805–810CrossRefGoogle Scholar
  83. Roukas T, Biliaderis CG (1995) Evaluation of carob pod as a substrate for pullulan production by Aureobasidium pullulans. Appl Biochem Biotechnol 55:27–44CrossRefGoogle Scholar
  84. Roy Chowdhury S, Basak RK, Sen R, Adhikari B (2012) Utilization of lignocellulosic natural fiber (jute) components during a microbial polymer production. Mater Lett 66:216–218CrossRefGoogle Scholar
  85. Santos M, Rodrigues A, Teixeira JA (2005) Production of dextran and fructose from carob pod extract and cheese whey by Leuconostoc mesenteroides NRRL B512(f). Biochem Eng J 25:1–6CrossRefGoogle Scholar
  86. Sarwat F, Ul Qader SA, Aman A, Ahmed N (2008) Production and characterization of a unique dextran from an indigenous Leuconostoc mesenteroides CMG713. Int J Biol Sci 4:379–386PubMedPubMedCentralCrossRefGoogle Scholar
  87. Schmid J, Meyer V, Meyer V (2011) Scleroglucan: biosynthesis, production and application of a versatile hydrocolloid. Appl Microbiol Biotechnol 91:937–947PubMedCrossRefGoogle Scholar
  88. Seesuriyachan P, Techapun C, Shinkawa H, Sasaki K (2010) Solid state fermentation for extracellular polysaccharide production by Lactobacillus confusus with coconut water and sugarcane juice as renewable wastes. Biosci Biotechnol Biochem 74:423–426PubMedCrossRefGoogle Scholar
  89. Seesuriyachan P, Kuntiya A, Hanmoungjai P, Techapun C (2011) Exopolysaccharide production by Lactobacillus confusus TISTR 1498 using coconut water as an alternative carbon source: the effect of peptone, yeast extract and beef extract. Songklanakarin J Sci Technol 33(4):379–387Google Scholar
  90. Seo HP, Son CW, Chung CH, Jung DI, Kim SK, Gross RA, Kaplan DL, Lee JW (2004) Production of high molecular weight pullulan by Aureobasidium pullulans HP-2001 with soybean pomace as a nitrogen source. Bioresour Technol 95:293–299PubMedCrossRefGoogle Scholar
  91. Seviour RJ, McNeil B, Fazenda ML, Harvey LM (2011) Operating bioreactors for microbial exopolysaccharide production. Crit Rev Biotechnol 31(2):170–185PubMedCrossRefPubMedCentralGoogle Scholar
  92. Shalini R, Gupta DK (2010) Utilization of pomace from apple processing industries: a review. J Food Sci Technol 47(4):365–371PubMedPubMedCentralCrossRefGoogle Scholar
  93. Sharma N, Prasad GS, Choudhury AR (2013) Utilization of corn steep liquor for biosynthesis of pullulan, an important exopolysaccharide. Carbohydr Polym 93:95–101PubMedCrossRefPubMedCentralGoogle Scholar
  94. Siddiqui NN, Aman A, Silipo A, Ul Qader SA, Molinaro A (2014) Structural analysis and characterization of dextran produced by wild and mutant strains of Leuconostoc mesenteroides. Carbohydr Polym 99:331–338PubMedCrossRefPubMedCentralGoogle Scholar
  95. Silbir S, Dagbagli S, Yegin S, Baysal T, Goksungur Y (2014) Levan production by Zymomonas mobilis in batch and continuousfermentation systems. Carbohydrate Polymers 99:454–461PubMedCrossRefPubMedCentralGoogle Scholar
  96. Silva MF, Fornari RCG, Mazutti MA, Oliveira D, Padilha FF, Cichoski AJ, Cansian RL, Luccio MD, Treichel H (2009) Production and characterization of xanthan gum by Xanthomonas campestris using cheese whey as sole carbon source. J Food Eng 90:119–123CrossRefGoogle Scholar
  97. Singh RS, Saini GK, Kennedy JF (2008) Pullulan: microbial sources, production and applications. Carbohydr Polym 73:515–531PubMedCrossRefPubMedCentralGoogle Scholar
  98. Sirajunnisa A, Vijayagopal V, Viruthagiri T (2012) Effect of synthetic carbon substrates and cane molasses, an agro waste, on exopolysaccharide production by P. fluorescens. Int J Sci Eng Appl 1(1)Google Scholar
  99. Smith RL, West TP, Gibbons WR (2008) Rhodospirillum rubrum: utilization of condensed corn solubles for poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) production. J Appl Microbiol 104:1488–1494PubMedCrossRefPubMedCentralGoogle Scholar
  100. Söğütçü E, Akyıldız SM, Toksoy Öner E (2011) Exopolysaccharide production from waste sugar beet pulp by Halomonas sp. In: The 3rd international conference on biodegradable and biobased polymers (BIOPOL-2011), Strasbourg, 29–31 Aug 2011Google Scholar
  101. Stredansky M, Conti E (1999) Xanthan production by solid state fermentation. Process Biochem 34:581–587CrossRefGoogle Scholar
  102. Survase SA, Saudagar PS, Singhal RS (2007) Use of complex media for the production of scleroglucan by Sclerotium rolfsii MTCC 2156. Bioresour Technol 98:1509–1512PubMedCrossRefPubMedCentralGoogle Scholar
  103. Sutherland IW (1982) Biosynthesis of microbial exopolysaccharides. Adv Microb Physiol 23:79–150Google Scholar
  104. Sutherland IW (1998) Novel and established applications of microbial polysaccharides. Trends Biotechnol 16:41–46PubMedCrossRefPubMedCentralGoogle Scholar
  105. Sutherland IW (2007) Bacterial exopolysaccharides. In: Kamerling JP (ed) Comprehensive glycoscience. Elsevier, AmsterdamGoogle Scholar
  106. Taşkın M, Erdal S, Canlı O (2010) Utilization of waste loquat (Eriobotrya japonica) kernels as substrate for scleroglucan production by locally isolated Sclerotium rolfsii. Food Sci Biotechnol 19:1069–1075CrossRefGoogle Scholar
  107. Taşkın M, Erdal S, Genisel M (2011) Biomass and exopolysaccharide production by Morchella esculenta in submerged culture using the extract from waste loquat (Eriobotrya japonica L.) kernels. J Food Process Preserv 35:623–630CrossRefGoogle Scholar
  108. Taşkın M, Ozkan B, Atici O, Aydogan MN (2012) Utilization of chicken feather hydrolysate as a novel fermentation substrate for production of exopolysaccharide and mycelial biomass from edible mushroom Morchella esculenta. Int J Food Sci Nutr 63(5):597–602PubMedCrossRefPubMedCentralGoogle Scholar
  109. Taylor CM, Roberts IS (2005) Capsular polysaccharides and their role in virulence. In: Russell W, Herwald H (eds) Concepts in bacterial virulence, vol Contributions to microbiology. Karger, BaselGoogle Scholar
  110. Thomas L, Larroche C, Pandey A (2013) Current developments in solid-state fermentation. Biochem Eng J 81:146–161CrossRefGoogle Scholar
  111. Toksoy Öner E (2013) Microbial production of extracellular polysaccharides from biomass. In: Feng Z (ed) Pretreatment techniques for biofuels and biorefineries. Springer, New York, pp 35–56CrossRefGoogle Scholar
  112. Turhan I, Bialka KL, Demirci A, Karhan M (2010) Enhanced lactic acid production from carob extract by Lactobacillus casei using invertase pretreatment. Food Biotechnol 24:364–374CrossRefGoogle Scholar
  113. van Hijum SA, Kralj S, Ozimek LK, Dijkhuizen L, van Geel-Schutten IG (2006) Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol Mol Biol Rev 70(1):157–176PubMedPubMedCentralCrossRefGoogle Scholar
  114. Vedyashkina TA, Revin VV, Gogotov IN (2005) Optimizing the conditions of dextran synthesis by the bacterium Leuconostoc mesenteroides grown in a molasses-containing medium. Appl Biochem Microbiol 41:361–364CrossRefGoogle Scholar
  115. Vidhyalakshmi R, Vallinachiyar C, Radhika R (2012) Production of xanthan from agro-industrial waste. J Adv Sci Res 3(2):56–59Google Scholar
  116. Vorhölter FJ, Schneiker S, Goesmann A, Krause L, Bekel T, Kaiser O, Linke B, Patschkowski T, Rückert C, Schmid J, Sidhu VK, Sieber V, Tauch A, Watt SA, Weisshaar B, Becker A, Niehaus K, Pühler A (2008) The genome of Xanthomonas campestris pv. campestris B100 and its use for the reconstruction of metabolic pathways involved in xanthan biosynthesis. J Biotechnol 134:33–45PubMedCrossRefPubMedCentralGoogle Scholar
  117. West TP, Nemmers B (2008) Curdlan production by Agrobacterium sp. ATCC 31749 on an ethanol fermentation coproduct. J Basic Microbiol 48:65–68PubMedCrossRefPubMedCentralGoogle Scholar
  118. Yoo SD, Harcum SW (1999) Xanthan gum production from waste sugar beet pulp. Bioresour Technol 70:105–109CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of BioengineeringGebze Institute of TechnologyGebzeTurkey
  2. 2.Department of Bioengineering, Industrial Biotechnology and Systems Biology (IBSB) Research GroupMarmara UniversityIstanbulTurkey

Personalised recommendations