Encyclopedia of Renaissance Philosophy

Living Edition
| Editors: Marco Sgarbi

Law of Free Fall in Renaissance Science

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-02848-4_939-1


The formulation of the laws of free fall and projectile motion is usually regarded as Galileo’s most important scientific achievement. The new science of motion was however met with skepticism not only by Aristotelians but also by mechanical philosophers. After the publication of the Dialogo sopra i due massimi sistemi del mondo (1632) and the Discorsi e dimostrazioni matematiche intorno a due nuove scienze (1638), interesting discussions took place in Europe concerning the validity of the law of fall. The issues that were mostly debated were (a) the possibility of deriving that law from a causal explanation of gravity, (b) Galileo’s views concerning the composition of continuous magnitudes, and (c) the alleged lack of empirical support in favor of the law.

This is a preview of subscription content, log in to check access.


Primary Literature

  1. Baliani, Giovan Battista. 1998. In De motu naturali gravium solidorum et liquidorum, ed. G. Baroncelli. Florence: Giunti.Google Scholar
  2. Descartes, René. 1964–1974. Oeuvres de Descartes. Eds. C. Adam and P. Tannery (13 vols., Paris, 1897–1913), new edition B. Rochot and P. Costabel, 11 vols. Paris: Vrin.Google Scholar
  3. Fabri, Honoré. 1646. Tractatus physicus de motu locali, in quo effectus omnes, qui ad impetum, motum naturalem, violentum, et mixtum pertinent, explicantur. Auctore P. Mousnerio cuncta excerpta ex praelectionibus R.P. Honorati Fabri. Lyon: Champion.Google Scholar
  4. Galilei, Galileo. 1967. Dialogue concerning the two chief world systems, 2nd ed. Trans. S. Drake. Berkeley: University of California Press.Google Scholar
  5. Galilei, Galileo. 1989. Two new sciences, 2nd ed. Trans. S. Drake. Toronto: Wall & Emerson.Google Scholar
  6. Gassendi, Pierre. 1658. Opera omnia in sex tomos divisa. Lyon: Anisson et Devenet.Google Scholar
  7. Le Cazre, Pierre. 1645. Physica demonstratio qua ratio, mensura, modus, ac potentia, accelerationis motus in naturali descensu gravium determinantur. Adversus nuper excogitatam a Galilaeo Galilaei Florentino Philosopho ac Mathematico de eodem Motu Pseudo-scientiam. Paris: Du Brueil.Google Scholar
  8. Mersenne, Marin. 1633. Traité des mouvemens, et de la cheute des corps pesans et de la proportion de leurs différentes vitesses. Paris: Villery.Google Scholar
  9. Mersenne, Marin. 1647. Novarum observationum physico-mathematicarum … tomus III. Paris: Bertier.Google Scholar
  10. Mersenne, Marin. 1945–1988. Correspondance du P. Marin Mersenne, religieux minime, 17 vols, eds. C. De Waard, M.B. Rochot, R. Pintard and A. Beaulieu. Paris: PUF and CNRS.Google Scholar
  11. Newton, Isaac. 1999. The Principia. Mathematical principles of natural philosophy. Trans. I.B. Cohen and A. Whitman, with a supplement by I.B. Cohen. Berkeley: University of California Press.Google Scholar
  12. Oresme, Nicole. 1968. Nicole Oresme and the Medieval Geometry of qualities and motions: A treatise of the uniformity and difformity of intensities known as Tractatus de configurationibus qualitatum et motuum. Trans. M. Clagett. Madison/ Milwaukee/London: University of Wisconsin Press.Google Scholar

Secondary Literature

  1. Arthur, Richard. 2016. On the mathematization of free fall: Galileo, descartes, and a history of Misconstrual. In The language of nature: Reassessing the mathematization of natural philosophy in the seventeenth century, ed. G. Gorham, B. Hill, E. Slowik, and C.K. Waters, 81–101. Minneapolis: University of Minnesota Press.Google Scholar
  2. Blay, Michel. 1998. Reasoning with the infinite. From the closed world to the mathematical universe. Trans. M.B. De Bevoise, Chicago : University of Chicago Press.Google Scholar
  3. Blay, Michel, and Egidio Festa. 1998. Mouvement, continu et composition des vitesses au XVIIe siècle. Archives Internationales d’Histoire des Sciences 48: 65–118.Google Scholar
  4. Damerow, Peter, Gideon Freudenthal, Peter McLaughlin, and Jürgen Renn. 2004. Exploring the limits of preclassical mechanics. 2nd ed. New York/Berlin/Heidelberg: Springer.CrossRefGoogle Scholar
  5. Dear, Peter. 1984. Mersenne and the learning of the schools. Ithaca: Cornell University Press.Google Scholar
  6. Dear, Peter. 1995. Discipline & experience: The mathematical way in the scientific revolution. Chicago: University of Chicago Press.CrossRefGoogle Scholar
  7. Drake, Stillman. 1974. Galileo’s work on free fall in 1604. Physis 16: 309–322.Google Scholar
  8. Elazar, Michael. 2011. Honoré Fabri and the concept of impetus: A bridge between conceptual frameworks. Dordrecht/Heidelberg/London/New York: Springer.CrossRefGoogle Scholar
  9. Galluzzi, Paolo. 1979. Momento. Studi Galileiani. Rome: Edizioni dell’Ateneo e Bizzarri.Google Scholar
  10. Galluzzi, Paolo. 2000. Gassendi and l’Affaire Galilée of the laws of motion. Science in Context 13: 509–545.CrossRefGoogle Scholar
  11. Giusti, Enrico. 1990. Galileo e le leggi del moto. In Galileo Galilei, Discorsi e dimostrazioni matematiche intorno a due nuove scienze, ix–lx, ed. E. Giusti. Turin: Einaudi.Google Scholar
  12. Jullien, Vincent, and André Charrak. 2002. Ce que dit Descartes touchant la chute des graves: de 1618 à 1646, étude d’un indicateur de la philosophie naturelle cartésienne. Paris: Presses Universitaires du Septentrion.Google Scholar
  13. Mahoney, Michael S. 1985. Diagrams and Dynamics: Mathematical Reflections on Edgerton’s Thesis. In Science and the Arts in the Renaissance, ed. John W. Shirley and F. David Hoeniger, 198-220. Washington: Folger Shakespeare Library.Google Scholar
  14. Maier, Anneliese. 1949. Die Vorläufer Galileis im 14. Jahrhundert. Studien Zur Naturphilosophie der Spätscholastik. Rome: Edizioni di Storia e Letteratura.Google Scholar
  15. Palmerino, Carla Rita. 1999. Infinite degrees of speed. Marin Mersenne and the debate over Galileo’s law of free fall. Early Science and Medicine 4: 269–328.CrossRefGoogle Scholar
  16. Palmerino, Carla Rita. 2003. Two Aristotelian responses to Galilei’s science of motion: Honoré Fabri and Pierre Le Cazre. In The new science and Jesuit science, ed. M. Feingold, 187–227. Dodrecht/Boston: Springer.Google Scholar
  17. Palmerino, Carla Rita. 2004. Galileo’s theories of free fall and projectile motion as interpreted by Pierre Gassendi. In The reception of the Galilean science of motion in seventeenth-century Europe, ed. C.R. Palmerino and J.M.M.H. Thijssen, 137–164. Dordrecht: Kluwer.CrossRefGoogle Scholar
  18. Palmerino, Carla Rita. 2010a. Experiments, mathematics, physical causes: How Mersenne came to doubt the validity of Galileo's law of free fall. Perspectives on Science 18: 50–76.CrossRefGoogle Scholar
  19. Palmerino, Carla Rita. 2010b. The Geometrization of motion: Galileo’s triangle of speed and its various transformations. Early Science and Medicine 15: 410–447.CrossRefGoogle Scholar
  20. Sylla, Edith. 1986. Galileo and the Oxford Calculatores: Analytical languages and the mean-speed theorem for accelerated motion. In Reinterpreting Galileo, ed. William A. Wallace, 53–108. Washington, DC: The Catholic University Press of America.Google Scholar

Authors and Affiliations

  1. 1.Radboud University NijmegenNijmegenThe Netherlands

Section editors and affiliations

  • Matteo Valleriani
    • 1
  1. 1.Max Planck Institute for the History of ScienceBerlinGermany