Encyclopedia of Geodesy

Living Edition
| Editors: Erik Grafarend

Gravity Anomalies

Living reference work entry
DOI: https://doi.org/10.1007/978-3-319-02370-0_45-1

Definition

Gravity anomaly. Difference between the measured gravity and the theoretical gravity derived from a reference body, after some corrections.

Introduction: Basic Quantities of Physical Geodesy

The shape of the Earth is well approximated by an ellipsoid of revolution, and similarly its gravity field is close to the field of such an ellipsoid. This reference body being precisely defined as we will see below is therefore natural to describe the Earth gravity field (and any related quantity) as departures, or anomalies, with respect to the ellipsoid.

The reference ellipsoid is defined from geometrical and dynamical quantities. Centered at the Earth’s center of mass, it has the mass, M, of the Earth (including the atmosphere); a semimajor axis, a, equal to the (conventional) Earth’s equatorial radius; a flattening f equal to the Earth’s flattening (or equivalently the polar radius b); and the same (mean) angular rotation rate ω. The surface of the ellipsoid is an equipotential of...

Keywords

Lithosphere Geophysics Topo 
This is a preview of subscription content, log in to check access

References and Reading

  1. Amante, C., and Eakins, B. W., 2009. ETOPO1,1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. Boulder, CO: NOAA Technical Memorandum NESDIS NGDC-24.Google Scholar
  2. Balmino, G., Vales, N., Bonvalot, S., and Briais, A., 2012. Spherical harmonic modelling to ultra-high degree of Bouguer and isostatic anomalies. Journal of Geodesy, 86, 499–520, doi: 10.1007/s00190-011-0533-4.CrossRefGoogle Scholar
  3. Bonvalot, S., Balmino, G., Briais, A., Kuhn, M., Peyrefitte, A., Vales, N., Biancale, R., Gabalda, G., Reinquin, F., and Sarrailh, M., 2012. World Gravity Map. 1:50000000 map, Eds. Paris: BGI-CGMW-CNES-IRD. Complete Bouguer anomaly (ISBN 978-2-2917310-08-3); Isostatic anomaly (ISBN 978-2-2917310-09-0); Surface free-air anomaly (ISBN 978-2-2917310-07-6).Google Scholar
  4. Commission for the Geological Map of the World – CGMW, 2010. Resolutions of the CGMW General Assembly. Paris: UNESCO.Google Scholar
  5. Heiskanen, W. A., and Moritz, H., 1967. Physical Geodesy. San Francisco: Freeman.Google Scholar
  6. Hofmann-Wellenhof, B., and Moritz, H., 2005. Physical Geodesy. Wien & New York: Springer.Google Scholar
  7. International Gravimetric Bureau - BGI, 2012. In Drewes, H., Hornik, H., Adam, J., and Rozsa, S. (eds.), The Geodesist’s Handbook 2012. (International Association of Geodesy). Journal of Geodesy, 86(10), doi: 10.1007/s00190-012-0584-1.
  8. Kuhn, M., Featherstone, W. E., and Kirby, J. F., 2009. Complete spherical Bouguer gravity anomalies over Australia. Australian Journal of Earth Sciences, 56, 213–223.CrossRefGoogle Scholar
  9. Pavlis, N. K., 1988. Modeling and estimation of a low degree geopotential model from terrestrial gravity data. Report No. 386, Department of Geodetic Science and Surveying, Ohio State University, Columbus, OH.Google Scholar
  10. Pavlis, N. K., Holmes, S. A., Kenyon, S. C., and Factor, J. K., 2008. An Earth Gravitational Model to Degree 2160: EGM2008. Vienna: EGU General Assembly, April 13–18, 2008.Google Scholar
  11. Torge, W., 2001. Geodesy, 3rd edn. Berlin: de Gruyter.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Bureau Gravimétrique International (BGI)ToulouseFrance
  2. 2.CNES/Geosciences Environnement Toulouse (GET)ToulouseFrance
  3. 3.Institut de Recherche pour le Développement (IRD)/Geosciences Environnement Toulouse (GET)ToulouseFrance