Skip to main content

Multi-GNSS Positioning

Definition

Multi-Global Navigation Satellite System (GNSS) positioning . Combination of GNSSs for precise positioning on Earth.

Introduction

The emerging multiple-frequency Global/Regional Navigation Satellite Systems (GNSSs/RNSSs) will enhance a wide range of positioning applications. The systems are the American Global Positioning System (GPS) , Russian GLObal’ naya NAvigatsionnaya Sputnikovaya Sistema (GLONASS) , Chinese BeiDou Navigation Satellite System (BDS) , European Galileo , Japanese Quasi-Zenith Satellite System (QZSS), and the Indian Regional Navigation Satellite System (IRNSS) .

The GNSS signals can be tracked by a receiver r with code and phase observables. For geodetic receivers, the code observables have precision at the decimeter-level, whereas the phase observables have millimeter-level precision. The general (linearized) system of observation equations for an arbitrary GNSS * can be expressed as follows,

$$ \begin{array}{l}\Delta\;{\phi}_{r,j}^{s_{\star...

Keywords

  • Global Position System
  • Ambiguity Resolution
  • Code Division Multiple Access
  • International GNSS Service
  • Zenith Tropospheric Delay

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2

References and Reading

  • Baarda, W. 1973. S-transformations and criterion matrices. Netherlands Geodetic Commission Publications on Geodesy, New Series, 5(1), 168, http://www.ncgeo.nl/phocadownload/18Baarda.pdf.

  • Banville, S., Collins, P., and Lahaye, F., 2013. GLONASS ambiguity resolution of mixed receiver types without external calibration. GPS Solutions, 17(3), 275–282, doi:10.1007/s10291-013-0319-7.

    CrossRef  Google Scholar 

  • Chen, H., Huang, Y., Chiang, K., Yang, M., and Rau, R., 2009. The performance comparison between GPS and BeiDou-2/COMPASS: a perspective from Asia. Journal of the Chinese Institute of Engineers, 32(5), 679–689.

    CrossRef  Google Scholar 

  • Collins, P., Lahaye, F., Hroux, P., Bisnath, S. 2008. Precise point positioning with ambiguity resolution using the decoupled clock model. In Proceedings of ION GNSS, GA.

    Google Scholar 

  • CSNO. 2013. BeiDou navigation satellite system signal in space interface control document: open service signal, version 2.0, China satellite navigation office. Tech. rep., 82 pages.

    Google Scholar 

  • Deng, C., Tang, W., Liu, J., and Shi, C., 2014. Reliable single-epoch ambiguity resolution for short baselines using combined GPS/BeiDou system. GPS Solutions, 18(3), 375–386, doi:10.1007/s10291-013-0337-5.

    CrossRef  Google Scholar 

  • Dow, J. M., Neilan, R. E., and Rizos, C., 2009. The international GNSS service in a changing landscape of Global Navigation Satellite Systems. Journal of Geodesy, 83(3), 191–198.

    CrossRef  Google Scholar 

  • GalileoICD. 2014. European GNSS (Galileo) Open Service, Signal in Space Interface Control Document, European Union. Tech. rep., 64 pages.

    Google Scholar 

  • Ge, M., Gendt, G., Rothacher, M., Shi, C., and Liu, J., 2008. Resolution of GPS carrier-phase ambiguities in precise point positioning (PPP) with daily observations. Journal of Geodesy, 82(7), 389–399, doi:10.1007/s00190-007-0187-4.

    CrossRef  Google Scholar 

  • GLONASSICD. 2008. Global Navigation Satellite System GLONASS, Interface Control Document, Navigational Radiosignal in bands L1, L2, Edition 5.1. Tech. rep., 65 pages.

    Google Scholar 

  • He, H., Li, J., Yang, Y., Xu, J., Guo, H., and Wang, A., 2014. Performance assessment of single- and dual-frequency BeiDou/GPS single-epoch kinematic positioning. GPS Solutions, 18(3), 393–403, doi:10.1007/s10291-013-0339-3.

    CrossRef  Google Scholar 

  • Hofmann-Wellenhof, B., Lichtenegger, H., Wasle, E. (eds.) 2008. GNSS: Global Navigation Satellite Systems. GPS, GLONASS, Galileo & more. Wien/New York: Springer-Verlag. ISBN 978-3-211-73012-6.

    Google Scholar 

  • ISRO. 2014. Indian Regional Navigation Satellite System Signal in Space ICD for Standard Positioning Service, V1.0. Tech. rep., 70 pages.

    Google Scholar 

  • JAXA. 2014. Japan Aerospace Exploration Agency (JAXA), Quasi-Zenith Satellite System Navigation Service – Interface Specification for QZSS (IS-QZSS), V1.6. Tech. rep., 248 pages.

    Google Scholar 

  • Jiang, Y., Yang, S., Zhang, G., and Li, G., 2011. Coverage performance analysis on combined-GEO-IGSO satellite constellation. Journal of Electronics, 28(2), 228–234.

    Google Scholar 

  • Jin, S., Jin, R., and Li, D., 2016. Assessment of BeiDou differential code bias variations from multi-GNSS network observations. Annals of Geophysics, 34, 259–269.

    CrossRef  Google Scholar 

  • Li, P., and Zhang, X., 2014. Integrating GPS and GLONASS to accelerate convergence and initialization times of precise point positioning. GPS Solutions, 18(3), 461–471.

    CrossRef  Google Scholar 

  • Li, X., Zhang, X., Ren, X., Fritche, M., Wickert, J., Schuh, H. 2015. Precise positioning with current multi-constellation Global Navigation Satellite Systems: GPS, GLONASS, Galileo and BeiDou. Scientific Reports, 5, Article number 8328, doi:10.1038/srep08328.

    Google Scholar 

  • Montenbruck, O., Hauschild, A., Steigenberger, P., Hugentobler, U., Teunissen, P. J. G., and Nakamura, S., 2013. Initial assessment of the COMPASS/BeiDou-2 regional navigation satellite system. GPS Solutions, 17(2), 211–222, doi:10.1007/s10291-012-0272-x.

    CrossRef  Google Scholar 

  • Montenbruck, O., Hauschild, A., and Steigenberger, P., 2014. Differential code bias estimation using multi-GNSS observations and global ionosphere maps. Navigation Journal of the Institute of Navigation, 61(3), 191–201.

    Google Scholar 

  • Nadarajah, N., Teunissen, P. J. G., and Raziq, N., 2013. BeiDou inter-satellite-type bias evaluation and calibration for mixed receiver attitude determination. Sensors, 13(7), 9435–9463.

    CrossRef  Google Scholar 

  • Nadarajah, N., Teunissen, P. J. G., Sleewaegen, J. M., and Montenbruck, O., 2015. The mixed-receiver BeiDou inter-satellite-type bias and its impact on RTK positioning. GPS Solutions, 19(3), 357–368, doi:10.1007/s10291-014-0392-6.

    CrossRef  Google Scholar 

  • Odijk, D., and Teunissen, P. J. G., 2013. Characterization of between-receiver GPS-Galileo inter-system biases and their effect on mixed ambiguity resolution. GPS Solutions, 17(4), 521–533.

    CrossRef  Google Scholar 

  • Odijk, D., Zhang, B., Khodabandeh, A., Odolinski, R., and Teunissen, P. J. G., 2015. On the estimability of parameters in undifferenced, uncombined GNSS network and PPP-RTK user models by means of S-system theory. Journal of Geodesy, doi:10.1007/s00190-015-0854-9.

    Google Scholar 

  • Odolinski, R., and Teunissen, P. J. G., 2016. Single-frequency, dual-GNSS versus dual-frequency, single-GNSS: a low-cost and high-grade receivers GPS-BDS RTK analysis. Journal of Geodesy, doi:10.1007/s00190-016-0921-x.

    Google Scholar 

  • Odolinski, R., Teunissen, P. J. G., and Odijk, D., 2014. Combined GPS + BDS + Galileo + QZSS for Long Baseline RTK Positioning. Tampa, FL: ION GNSS.

    Google Scholar 

  • Odolinski, R., Teunissen, P. J. G., and Odijk, D., 2015a. Combined BDS, Galileo, QZSS and GPS single-frequency RTK. GPS Solutions, 19(1), 151–163, doi:10.1007/s10291-014-0376-6.

    CrossRef  Google Scholar 

  • Odolinski, R., Teunissen, P. J. G., and Odijk, D., 2015b. Combined GPS + BDS for short to long baseline RTK positioning. Measurement Science and Technology, 26, 045801, doi:10.1088/0957-0233/26/4/045801.

    CrossRef  Google Scholar 

  • Paziewski, J., and Wielgosz, P., 2015. Accounting for Galileo-GPS inter-system biases in precise satellite positioning. Journal of Geodesy, 89(1), 81–93, doi:10.1007/s00190-014-0763-3.

    CrossRef  Google Scholar 

  • Paziewski, J., Sieradzki, R., and Wielgosz, P., 2015. Selected properties of GPS and Galileo-IOV receiver intersystem biases in multi-GNSS data processing. Measurement Science and Technology, 26(9), 095008, doi:10.1088/0957-0233/26/9/09500.

    CrossRef  Google Scholar 

  • Shi, C., Zhao, Q., Hu, Z., and Liu, J., 2013. Precise relative positioning using real tracking data from COMPASS GEO and IGSO satellites. GPS Solutions, 17(1), 103–119, doi:10.1007/s10291-012-0264-x.

    CrossRef  Google Scholar 

  • Teunissen, P. J. G., 1985. Generalized inverses, adjustment, the datum problem and S-transformations. In Sanso, F., and Grafarend, E. W. (eds.), Optimization of geodetic networks. Berlin/Heidelberg/New York/Tokyo: Springer, pp. 11–55.

    CrossRef  Google Scholar 

  • Teunissen, P. J. G., 1995. The least squares ambiguity decorrelation adjustment: a method for fast GPS integer estimation. Journal of Geodesy, 70, 65–82.

    CrossRef  Google Scholar 

  • Teunissen, P. J. G., 1998. Success probability of integer GPS ambiguity rounding and bootstrapping. Journal of Geodesy, 72, 606–612.

    CrossRef  Google Scholar 

  • Teunissen, P. J. G., and Khodabandeh, A., 2015. Review and principles of PPP-RTK methods. Journal of Geodesy, 89(3), 217–240.

    CrossRef  Google Scholar 

  • Teunissen, P. J. G., and Kleusberg, A. (eds.), 1998. GPS for Geodesy. Second Completely Revised and Extended Edition. Berlin: Springer-Verlag.

    Google Scholar 

  • Teunissen, P. J. G., Odolinski, R., and Odijk, D., 2014. Instantaneous BeiDou + GPS RTK positioning with high cut-off elevation angles. Journal of Geodesy, 88(4), 335–350.

    CrossRef  Google Scholar 

  • Wanninger, L., 2012. Carrier-phase inter-frequency biases of GLONASS receivers. Journal of Geodesy, 86, 139–148, doi:10.1007/s00190-011-0502-y.

    CrossRef  Google Scholar 

  • Yang, Y., Li, J., Xu, J., Tang, J., Guo, H., and He, H., 2011. Contribution of the Compass satellite navigation system to global PNT users. Chinese Science Bulletin, 56(26), 2813–2819.

    CrossRef  Google Scholar 

  • Zaminpardaz, S., Teunissen, P. J. G., and Nadarajah, N., 2016. GLONASS CDMA L3 ambiguity resolution and positioning. GPS Solutions, doi:10.1007/s10291-016-0544-y.

    Google Scholar 

  • Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., and Webb, F. H., 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research, 102(3), 5005–5017.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Robert Odolinski or Amir Khodabandeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Odolinski, R., Khodabandeh, A. (2016). Multi-GNSS Positioning. In: Grafarend, E. (eds) Encyclopedia of Geodesy. Springer, Cham. https://doi.org/10.1007/978-3-319-02370-0_142-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-02370-0_142-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-02370-0

  • eBook Packages: Springer Reference Earth & Environm. ScienceReference Module Physical and Materials Science