Skip to main content

Disturbing Potential from Gravity Anomalies: From Globally Reflected Stokes Boundary Value Problem to Locally Oriented Multiscale Modeling

  • Living reference work entry
  • First Online:
Encyclopedia of Geodesy


Stokes problem, Fourier series expansion in terms of outer harmonics, classical global solution by convolving gravity anomalies against the Stokes kernel , regularization of the Stokes kernel, local multiscale approximation.


The traditional approach of physical geodesy (cf., e.g., Heiskanen and Moritz, 1967; Moritz, 2015) starts from the assumption that scalar gravity intensity is available over the whole Earth’s surface. The gravitational part of the gravity potential can then be regarded as a harmonic function outside the Earth’s surface. A classical approach to gravity field modeling was conceived by G.G. Stokes (1849). He proposed reducing the given gravity accelerations from the Earth’s surface to the geoid (see, e.g., Listing, 1878), where the geoid is a level surface, e.g., its potential value is constant. The difference between the reduced gravity disturbing potential, i.e., the difference between the actual and the reference potential, can be obtained...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References and Reading

  • Bruns, E. H., 1878. Die Figur der Erde. Publikationen des Königlichen Preussischen Geod ä tischen Instituts. Berlin, P. Stankiewicz Buchdruckerei.

    Google Scholar 

  • Cui, J. and Freeden, W., 1997. Equidistribution on the sphere. SIAM 18, 595–609.

    Google Scholar 

  • Freeden, W., 1978. An application of a summation formula to numerical computation of integrals over the sphere. Bulletin Géodésique, 52, 165–175.

    Article  Google Scholar 

  • Freeden, W., 2015. Geomathematics: Its role, its aim, and its potential. In Freeden, W., Nashed, Z., and Sonar, T. (eds.), Handbook of Geomathematics. 2nd edn pp. 3–78. Heidelberg: Springer.

    Google Scholar 

  • Freeden, W., and Gerhards, C., 2012. Geomathematically Oriented Potential Theory. Boca Raton: Chapman & Hall/CRC.

    Book  Google Scholar 

  • Freeden, W., and Maier, T., 2002. On multiscale denoising of spherical functions: basic theory and numerical aspects. Electronic Transactions on Numerical Analysis (ETNA), 14, 56–78.

    Google Scholar 

  • Freeden, W., and Schreiner, M., 2006. Local multiscale modelling of geoid undulations from deflections of the vertical. Journal of Geodesy, 79, 641–651.

    Article  Google Scholar 

  • Freeden, W., and Wolf, K., 2009. Klassische Erdschwerefeldbestimmung aus der Sicht moderner Geomathematik. Mathematische Semesterberichte, 56, 53–77.

    Article  Google Scholar 

  • Freeden, W., Gervens, T., and Schreiner, M., 1998. Constructive Approximation on the Sphere (With Applications to Geomathematics). Oxford: Oxford Science Publications/Clarendon Press.

    Google Scholar 

  • Grafarend, E. W., Klapp, M., and Martinec, Z., 2015. Spacetime modelling of the Earth’s gravity field by ellipsoidal harmonics. In Freeden, W., Nashed, Z., and Sonar, T. (eds.), Handbook of Geomathematics, 2nd edn, pp. 381–496, Heidelberg: Springer.

    Google Scholar 

  • Heiskanen, W. A., and Moritz, H., 1967. Physical Geodesy. San Francisco: W.H. Freeman.

    Google Scholar 

  • Hofmann-Wellenhof, B., and Moritz, H., 2006. Physical Geodesy, 2nd edn. Wien/New York: Springer.

    Google Scholar 

  • Listing, J. B., 1878. Neue geometrische und dynamische Constanten des Erdkörpers. Nachrichten von der Königlichen Gesellschaft der Wissenschaften und der Georg-Augusts-Universität zu Göttingen, pp. 749–815.

    Google Scholar 

  • Molodensky, M. S., Eremeev, V. F., and Yurkina, M. I., 1960. Methods for study of the external gravitational field and figure of the Earth. Trudy TsNIIGAiK, Geodezizdat, Moscow, p. 131 (English translat.: Israel Program for Scientific Translation, Jerusalem, 1962).

    Google Scholar 

  • Moritz, H., 2015. Classical physical geodesy. In Freeden, W., Nashed, Z., and Sonar, T. (eds.), Handbook of Geomathematics. 2nd edn, pp. 253–290, Heidelberg: Springer.

    Google Scholar 

  • Stokes, G. G., 1849. On the variation of gravity on the surface of the Earth. Transactions of the Cambridge Philosophical Society, 8, 672–695.

    Google Scholar 

  • Weyl, H., 1916. Über die Gleichverteilung von Zahlen mod Eins. Mathematische Annalen, 77, 313–352.

    Article  Google Scholar 

  • Wolf, K., 2009. Multiscale modeling of classical boundary value problems in physical geodesy by locally supported wavelets. PhD thesis, University of Kaiserslautern, Geomathematics Group.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Matthias Augustin or Willi Freeden .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this entry

Cite this entry

Augustin, M., Blick, C., Eberle, S., Freeden, W. (2015). Disturbing Potential from Gravity Anomalies: From Globally Reflected Stokes Boundary Value Problem to Locally Oriented Multiscale Modeling. In: Grafarend, E. (eds) Encyclopedia of Geodesy. Springer, Cham.

Download citation

  • DOI:

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-02370-0

  • eBook Packages: Springer Reference Earth and Environm. ScienceReference Module Physical and Materials ScienceReference Module Earth and Environmental Sciences

Publish with us

Policies and ethics