Skip to main content

Structures and Properties of Oxide Superconductors

  • Living reference work entry
  • Latest version View entry history
  • First Online:
Handbook of Materials Structures, Properties, Processing and Performance
  • 254 Accesses

Abstract

Using chapter “Electrovalent Crystal Structures and Chemistry,” and especially the crystal chemistry of metal oxides as a platform, this chapter will examine basic structures and properties of oxide superconductors, particularly the so-called high-temperature (HT) superconductors. The two conditions for true superconductors, zero resistance (or resistivity), and a demonstrated Meissner effect (levitation of a magnet) are described, the latter as the exclusion of magnetic flux in the superconducting state. However, this chapter begins with a brief overview of more conventional metal or alloy superconductors in order to establish a relationship between these more conventional superconductors in contrast to oxide superconductors. It is pointed out that since the popular theory of superconductivity, the BCS theory, does not elucidate specific mechanisms which provide any predictability or avenues for guided exploration, future innovations may hinge on novel design strategies to improve existing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Ali MH, Wu B, Dougal RH (2010) An overview of SMES applications in power and energy systems. IEEE Trans Sust Energ 1(1):38–47

    Article  Google Scholar 

  • Bardeen J, Cooper LH, Schrieffer JR (1957) Microscopic theory of superconductivity. Phyc Rev 106:162–164

    Article  Google Scholar 

  • Bednorz JG, Müller KA (1986) Possible high Tc superconductivity in the La-Ba-Cu-O system. Z Phys B Con Mat 64:188–190

    Article  Google Scholar 

  • Bray JW (2008) Superconducting applications: present and future. J Supercond Nov Magn 21(6):335–341

    Article  Google Scholar 

  • Chu CW, Hor PH, Meng RC, Gao L, Hwang ZJ (1987) Superconductivity at 52.2K in the lanthanum-barium- copper-oxide system. Science 235:567–569

    Article  Google Scholar 

  • Drozdov AP, Eremets MI, Troyan IA, Ksenotontov V, Shylin SI (2015) Conventional superconductivity at 203 K at high pressures in the sulfur hydride system. Nature 525:73–76

    Article  Google Scholar 

  • Etourneau J (1992) Superconducting materials. In: Cheetham K, Day P (eds) Solid state chemistry: compounds. Clarendon, Oxford, UK, pp 60–111

    Google Scholar 

  • Fisk Z, Ott H-R, Thompson JD (2009) Superconducting materials: what the record tells us. Phil Mag 89:2111–2115

    Article  Google Scholar 

  • Geballe TH, Hulm JK (1996) Bernd Matthias. National Academic Press, Washington, DC

    Google Scholar 

  • Greene LH (2011) Taming serendipity. Phys World 24:41–43

    Article  Google Scholar 

  • Hamidian MH, Edkins SD, Joo SH, Kostin A, Eisaka H, Uchida S, Lawler MJ, Kim EA, Mackenzie AP, Fujita K, Lee J, Davis JCS (2016) Detection of a Cooper-Pair density wave in Bi(2)Sr(2)CaCu(2)O98 + x). Nature 532:343–347

    Article  Google Scholar 

  • Halder A, Liang A, Kresin VV (2015) A novel feature in aluminum cluster photoionization spectra and possibility of electron pairing at T > 100 K. Nano Lett 15(2):1410–1413

    Article  Google Scholar 

  • Hosono H, Tanaka K, Takeyema-Muromachi E, Kageyama H, Yamenaka S, Kumakura H, Nahara M, Hiramatru H, Fujitsu S (2015) Exploration of new superconductors and functional materials and fabrication of superconducting tape and wires of iron pnictides. Sci Technol Adv Mater 16(033503):1–86

    Google Scholar 

  • Hunter BA, Jorgensen JD, Wagner JL, Radaelli PG, Hinks DG, Shaked H, Hitterman RL, Von Dreele RB (1994) Pressure-induced structural changes in superconducting HgBa2Ca(n-1)CunO2n+2+d(n = 1, 2, 3). Phys C Supercond 221:1–8

    Article  Google Scholar 

  • Ichinokura S, Sugawana K, Takayama A, Takahashi T, Hasigawa S (2016) Superconducting calcium-intercalated bilayer graphene. ACS Nano 10:2761–2765

    Article  Google Scholar 

  • Kamihara Y, Watanabe T, Hirano M, Hosono H (2008) Iron-basedlayered superconductor La[O(1-x)Fe(x)]FeAs; x=0.05-0.12) with Tc = 26 K. J Am Chem Soc 130:3296–3297

    Article  Google Scholar 

  • Komimura H, Ushio H, Matsuno S, Hamada T (2010) Theory of copper oxide superconductors. Springer, Berlin/Heidelberg

    Google Scholar 

  • Ludbrook BM, Levy G, Nigge P, Zunno M, Schneider M, Dvorak DJ, Veenstra CN, Zhdanovick S, Wong D, Dosanjh P, Strasser C, Stohr A, Forti S, Ast CR, Damascelli A (2012) Evidence for superconductivity in Li-decorated monolayer graphene. Proc Natl Acad Sci 112(38):11795–11799

    Article  Google Scholar 

  • Maeda H, Tanaka Y, Fukutomi M, Asano T (1988) A new high-TC oxide superconductor without a rare earth element. JPN J Appl Phys 27:L209–L210

    Article  Google Scholar 

  • Morandi A, Trevisani L, Negrini F, Ribani PL, Fabbri M (2012) Feasibility of superconducting magnetic energy storage on board ground vehicles with present state-of-the-art superconductors. IEEE Trans Appl Supercon 22(2):120–122

    Article  Google Scholar 

  • Park C, Snyder RL (1995) Structures of high-temperature cuprate superconductors. J Amer Ceramic Soc 28(12):3171–3194

    Article  Google Scholar 

  • Parks RD (ed) (1969) Superconductivity. Marcel Dekker, New York

    Google Scholar 

  • Seidel P (2015) Applied superconductivity: handbook on devices and applications. Wiley-VCH Verlay GmbH & Co, Weinheim

    Book  Google Scholar 

  • Sheng ZZ, Hermann AM (1988) Bulk superconductivity at 120 K in the Tℓ-Ca-Ba-Cu-O system. Nature 332:138–139

    Article  Google Scholar 

  • Uchida S (2015) High temperature superconductivity: the road to higher critical temperature. Springer, Tokyo (Springer Series in Materials Science)

    Book  Google Scholar 

  • Wilson M (1983) Superconducting magnets. Clarendon, Oxford, p 295

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence E. Murr .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this entry

Cite this entry

Murr, L.E. (2016). Structures and Properties of Oxide Superconductors. In: Handbook of Materials Structures, Properties, Processing and Performance. Springer, Cham. https://doi.org/10.1007/978-3-319-01905-5_14-2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-01905-5_14-2

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Online ISBN: 978-3-319-01905-5

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Chapter history

  1. Latest

    Structures and Properties of Oxide Superconductors
    Published:
    26 July 2016

    DOI: https://doi.org/10.1007/978-3-319-01905-5_14-2

  2. Original

    Structures and Properties of Oxide Superconductors
    Published:
    25 July 2014

    DOI: https://doi.org/10.1007/978-3-319-01905-5_14-1