Advertisement

Integration of RF and VLC Systems

  • Michael B. Rahaim
  • Thomas D. C. Little
Living reference work entry

Abstract

As the lighting industry moves toward long-lasting solid-state luminaires, advanced systems will begin to integrate novel use cases into the lighting infrastructure. The proliferation of wireless devices and the demand for wireless access in indoor environments create a synergy between the wireless communications and indoor lighting industries. Since wireless traffic demand is at its highest in areas where artificial lighting is already in place, it makes perfect sense to incorporate novel wireless access technologies into the lighting infrastructure. This chapter focuses on the integration of visible light communication (VLC) with radio-frequency (RF) networks in order to provide additional wireless capacity in areas where RF is challenged with meeting the growing demand. We review current trends in wireless network access, provide an overview of VLC, and detail the requirements for implementation of such an integrated system.

Keywords

Access Point Wavelength Division Multiplex User Device Visible Light Communication Power Line Communication 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Andrews J (2013) Seven ways that hetnets are a cellular paradigm shift. IEEE Commun Mag 51(3):136–144. doi:10.1109/MCOM.2013.6476878CrossRefGoogle Scholar
  2. Andrews J, Claussen H, Dohler M, Rangan S, Reed M (2012) Femtocells: past, present, and future. IEEE J Sel Areas Commun 30(3):497–508. doi:10.1109/JSAC.2012.120401CrossRefGoogle Scholar
  3. Butala P, Elgala H, Little T (2013) SVD-VLC: a novel capacity maximizing VLC mimo system architecture under illumination constraints. In: GLOBECOM workshops (GC Wkshps), 2013 IEEE, http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6825137
  4. Chandrasekhar V, Andrews J, Gatherer A (2008) Femtocell networks: a survey. IEEE Commun Mag 46(9):59–67. doi:10.1109/MCOM.2008.4623708CrossRefGoogle Scholar
  5. Elgala H, Mesleh R, Haas H (2011) Indoor optical wireless communication: potential and state-of-the-art. IEEE Commun Mag 49(9):56–62. doi:10.1109/MCOM.2011.6011734CrossRefGoogle Scholar
  6. Entner R (2012) The wireless industry: the essential engine of us economic growth. Technical report, Recon analytics. http://reconanalytics.com/2012/04/essential-engine-of-us-economic-growth/
  7. Gancarz J, Elgala H, Little T (2013) Impact of lighting requirements on VLC systems. IEEE Commun Mag 51(12):34–41. doi:10.1109/MCOM.2013.6685755CrossRefGoogle Scholar
  8. Hou J, O’Brien D (2006) Vertical handover-decision-making algorithm using fuzzy logic for the integrated Radio-and-OW system. IEEE Trans Wirel Commun 5(1):176–185. doi:10.1109/TWC.2006.1576541CrossRefGoogle Scholar
  9. IEEE (2012) IEEE std 802.11ad-2012 (amendment to IEEE std 802.11-2012, as amended by IEEE std 802.11ae-2012 and IEEE std 802.11aa-2012)Google Scholar
  10. IES TM-23-11 (2011) Lighting control protocols. Technical report. Illuminating Engineering SocietyGoogle Scholar
  11. Kahn J, Barry J (1997) Wireless infrared communications. Proc IEEE 85(2):265–298. doi:10.1109/5.554222CrossRefGoogle Scholar
  12. Komine T, Nakagawa M (2004) Fundamental analysis for visible-light communication system using LED lights. IEEE Trans Consum Electron 50(1):100–107. doi:10.1109/TCE.2004.1277847, http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4654267&tag=1
  13. Kottke C, Hilt J, Habel K, Vučić J, Langer KD (2012) 1.25 gbit/s visible light wdm link based on dmt modulation of a single rgb led luminary. In: European conference and exhibition on optical communication, Optical Society of America, p We.3.B.4, doi:10.1364/ECEOC.2012.We.3.B.4, http://www.opticsinfobase.org/abstract.cfm?URI=ECEOC-2012-We.3.B.4
  14. Nakamura T, Nagata S, Benjebbour A, Kishiyama Y, Hai T, Xiaodong S, Ning Y, Nan L (2013) Trends in small cell enhancements in lte advanced. IEEE Commun Mag 51(2):98–105. doi:10.1109/MCOM.2013.6461192CrossRefGoogle Scholar
  15. Nasser N, Hasswa A, Hassanein H (2006) Handoffs in fourth generation heterogeneous networks. IEEE Commun Mag 44(10):96–103. doi:10.1109/MCOM.2006.1710420CrossRefGoogle Scholar
  16. O’Brien D (2011) Visible light communications: challenges and potential. In: Photonics conference (PHO), 2011 IEEE, pp 365–366. doi:10.1109/PHO.2011.6110579Google Scholar
  17. O’Brien D, Zeng L, Le-Minh H, Faulkner G, Walewski J, Randel S (2008) Visible light communications: challenges and possibilities. In: Personal, indoor and mobile radio communications, 2008. PIMRC 2008. IEEE 19th international symposium on, pp 1–5. doi:10.1109/PIMRC.2008.4699964Google Scholar
  18. Pollini G (1996) Trends in handover design. IEEE Commun Mag 34(3):82–90CrossRefGoogle Scholar
  19. Qualcomm (2013) The 1000x data challenge. http://www.qualcomm.com/solutions/wireless-networks/technologies/1000x-data, [Online]. Accessed 6 Mar 2014
  20. Rahaim M, Vegni A, Little TDC (2011) A hybrid radio frequency and broadcast visible light communication system. In: GLOBECOM workshops (GC Wkshps), 2011 IEEE, pp 792–796. doi:10.1109/GLOCOMW.2011.6162563Google Scholar
  21. Rahaim M, Prince G, Little T (2012) State estimation and motion tracking for spatially diverse VLC networks. In: Globecom workshops (GC Wkshps), 2012 IEEE, pp 1249–1253. doi:10.1109/GLOCOMW.2012.6477760Google Scholar
  22. ZTE Corporation (2012) Evolution of microwave radio for modern communication networks. http://wwwen.zte.com.cn/endata/magazine/ztetechnologies/2012/no5/articles/201209/t20120912_343888.html, [Online]. Accessed 24 Mar 2014

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Boston UniversityBostonUSA

Personalised recommendations