Skip to main content

Optical Wireless Applications

  • Reference work entry
  • First Online:
  • 4151 Accesses

Abstract

As light-emitting diodes (LEDs) increasingly displace incandescent lighting over the next few years, general applications of optical wireless (OW) technology are expected to include wireless Internet access, broadcast from LED signage, and machine-to-machine positioning and navigation by light. This section explores several fundamental research topics of indoor optical wireless communications (IOWC). The authors develop a simulation method to generate IOWC channel models by tracking light reflections. The method is further optimized by investigating the contribution of each order of reflections and proposing a calibration method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alqudah Y, Kavehrad M (2003) MIMO characterization of indoor wireless optical link using a diffuse-transmission configuration. IEEE Trans Commun 51(9):1554–1560

    Article  Google Scholar 

  • Anand M, Mishra P (2010) A novel modulation scheme for visible light communication. In: Proceedings of India Conference (INDICON). pp 1–3

    Google Scholar 

  • Barros DJF, Wilson SK, Kahn JM (2012) Comparison of orthogonal frequency-division multiplexing and pulse-amplitude modulation in indoor optical wireless links. IEEE Trans Commun 60(1):153

    Article  Google Scholar 

  • Barry J, Kahn J et al (1993) Simulation of multipath impulse response for indoor wireless optical channels. IEEE J Sel Areas Commun 11(3):367–379

    Article  Google Scholar 

  • Center for Ubiquitous Communication by Light http://www.uclight.ucr.edu/

  • Cui K, Cheng G, Xu Z (2010) Line-of-sight visible light communication system design and demonstration. In: 7th communication systems networks and digital signal processing

    Google Scholar 

  • Fadlullah J, Kavehrad M (2010) Indoor high-bandwidth optical wireless links for sensor networks. J Lightwave Technol 28(21):3086–3094

    Google Scholar 

  • Gfeller FR, Bapst UH (1979) Wireless in-house data communication via diffuse infrared radiation. Proc IEEE 67(11):1474–1486

    Article  Google Scholar 

  • Grubor J, Randel S et al (2008) Broadband information broadcasting using led-based interior lighting. J Lightwave Technol 26(24):3883–3892

    Article  Google Scholar 

  • Hashemi H (1994) Statistical modeling and simulation of the rms delay spread of indoor radio propagation channels. IEEE Trans Veh Technol 43(1):110–120

    Article  Google Scholar 

  • Home Gigabit Access http://www.ict-omega.eu/

  • Howard SJ, Pahlavan K (1990) Performance of a DFE modem evaluated from measured indoor radio multipath profiles. In: ICC ’90 communications, vol 4. pp 1341–1345

    Google Scholar 

  • Kahn JM, You R et al (1998) Imaging diversity receivers for high-speed infrared wireless communication. IEEE Commun Mag 36(12):88

    Article  Google Scholar 

  • Kavehrad M (2010) Sustainable energy-efficient wireless applications using light. IEEE Commun Mag 48:66–73

    Article  Google Scholar 

  • Kavehrad M, Fadlullah J (2010) Wideband optical propagation measurement system for characterization of indoor optical wireless channels. Proc SPIE 7620:7620 0E

    Article  Google Scholar 

  • Kavehrad M, Jivkova S (1999) Indoor wireless infrared local access, multi-spot diffusing with computer generated holographic beam-splitters. IEEE Int Conf Commun 1:604–608

    Google Scholar 

  • Kim J, Lee D, Kim K, Park Y (2010) Performance improvement in visible light communication by using spread spectrum coding. In: OptoElectronics and communication conference (OECC) 15th. p 278

    Google Scholar 

  • Kishi T et al (2013) A high-speed LED driver that sweeps out the remaining carriers for visible light communications. J Lightwave Technol 32(2):239–249

    Article  Google Scholar 

  • Komine T, Nakagawa M (2004) Fundamental analysis for visible-light communications system using LED lights. J IEEE Trans Consum Electron 50(1):100

    Article  Google Scholar 

  • Lee YU, Kavehrad M (2012) Two hybrid positioning system design techniques with lighting LEDs and ad-hoc wireless network. IEEE Trans Consum Electron 58:1176

    Article  Google Scholar 

  • Lee JS, Su YW, Shen CC (2007) A comparative study of wireless protocols: bluetooth, UWB, ZigBee, and Wi-Fi. In: Industrial Electronics Society, 2007. IECON 2007. 33rd annual conference of the IEEE

    Google Scholar 

  • NSF Center on Optical Wireless Applications http://cowa.psu.edu/

  • Park H, Lee K (2011) Modulations for visible light communications with dimming control. J IEEE Photon Technol Lett (99)

    Google Scholar 

  • Sexton TA, Pahlavan K (1989) Channel modeling and adaptive equalization of indoor radio channels. IEEE J Sel Areas Commun 7(1):114–121

    Article  Google Scholar 

  • Visible Light Communications Consortium http://www.vlcc.net/

  • Vucic J, Kottke C et al (2010) 513 Mbit/s visible light communications link based on DMT-modulation of a white LED. J Lightwave Technol 28(24):3512

    Google Scholar 

  • Xu Z, Sadler BM (2008) Ultraviolet communications: potential and state-of-the-art. IEEE Commun Mag 46(5):67–73

    Article  Google Scholar 

  • Yun G, Kavehrad M (1992) Spot diffusing and fly-eye receivers for indoor infrared wireless communications. In: Proceedings of IEEE wireless communications conference, Vancouver, Canada

    Google Scholar 

  • Zhou Z, Kavehrad M, Deng P (2012) Energy efficient lighting and communications. In: Proceedings of the SPIE 8282, broadband access communication technologies VI, San Francisco, CA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kavehrad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Zhou, Z., Kavehrad, M. (2017). Optical Wireless Applications. In: Karlicek, R., Sun, CC., Zissis, G., Ma, R. (eds) Handbook of Advanced Lighting Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-00176-0_34

Download citation

Publish with us

Policies and ethics