Skip to main content

LED Materials: GaN on Si

  • Reference work entry
  • First Online:
Handbook of Advanced Lighting Technology

Abstract

LED materials for incandescent lighting are based on thin Gallium-Nitride layers. Due to the lack of Gallium-Nitride substrates such layers are usually grown as thin crystal layers on sapphire or silicon-carbide substrates. Gallium-Nitride grown on silicon is a material platform which offers a huge benefit as low substrate cost, large substrate diameter, and also opens a route for manufacturing in depreciated Si wafer fabs. But long GaN on Si was believed to be a niche and not suited for high performance devices. This is because material growth requires processes with temperatures above 1000 °C and thermal stress leads to cracking of layers even below device relevant thicknesses. In the last 15 years these problems have been solved and today GaN on Si based LEDs are competitive to GaN on sapphire based devices. This chapter describes the development of GaN on Si LEDs, the differences to GaN on sapphire based structures and different routes for achieving a high output power although these layers are originally grown on a light absorbing substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 849.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ager JW III, Reichertz LA, Cui Y, Romanyuk YE, Kreier D, Leone SR, Yu KM, Schaff WJ, Walukiewicz W (2009) Electrical properties of InGaN-Si heterojunctions. Phys Status Solidi C 6:S413

    Article  Google Scholar 

  • Alarcón-Lladó E, Bin-Dolmanan S, Lin VKX, Teo SL, Dadgar A, Krost A, Tripathy S (2010) Temperature rise in InGaN/GaN vertical light emitting diode on copper transferred from silicon probed by Raman scattering. J Appl Phys 108:114501

    Article  Google Scholar 

  • Amano H, Iwaya M, Kashima T, Katsuragawa M, Akasaki I, Han J, Hearne S, Floro JA, Chason E, Figiel J (1998) Stress and Defect Control in GaN Using Low Temperature Interlayers. Jpn J Appl Phys 37:L1540

    Article  Google Scholar 

  • Bläsing J, Reiher A, Dadgar A, Diez A, Krost A (2002) The origin of stress reduction by low-temperature AlN interlayers. Appl Phys Lett 81:2722

    Article  Google Scholar 

  • Bykov P (1972) Spontaneous Emission in a Periodic Structure. Sov Phys JETP 35:269

    Google Scholar 

  • Chen NC, Lien WC, Shih CF, Chang PH, Wang TW, Wu MC (2006) Nitride light-emitting diodes grown on Si (111) using a TiN template. Appl Phys Lett 88:191110

    Article  Google Scholar 

  • Chiu C-H, Lin D-W, Lin C-C, Li Z-Y, Chang W-T, Hsu H-W, Kuo H-C, Lu T-C, Wang S-C, Liao W-T, Tanikawa T, Honda Y, Yamaguchi M, Sawaki N (2011) Reduction of Efficiency Droop in Semipolar (1101) InGaN/GaN Light Emitting Diodes Grown on Patterned Silicon Substrates. Appl Phys Exp 4:012105

    Article  Google Scholar 

  • Compound Semiconductor, Lattice Power Corporation (2010) Silicon-based LEDs leap from lab to fab. 16(4):30

    Google Scholar 

  • Dadgar A, Krost A (2013) Epitaxial growth and benefits of GaN on silicon. In: Gil B (ed) III-nitride semiconductors and their modern devices. Oxford University Press, Oxford. ISBN 978-0-19-968172-3

    Google Scholar 

  • Dadgar A, Bläsing J, Diez A, Alam A, Heuken M, Krost A (2000) Metalorganic Chemical Vapor Phase Epitaxy of Crack-Free GaN on Si (111) Exceeding 1 µm in Thickness. Jpn J Appl Phys 39:L1183

    Article  Google Scholar 

  • Dadgar A, Alam A, Riemann T, Bläsing J, Diez A, Poschenrieder M, Straßburg M, Christen J, Krost A (2001a) Crack-Free InGaN/GaN Light Emitters on Si(111). Phys Status Solidi A 188:155–158

    Article  Google Scholar 

  • Dadgar A, Poschenrieder M, Bläsing J, Fehse K, Riemann T, Diez A, Christen J, Krost A (2001b) Bright Crack-Free 300x300 µm2 InGaN Light Emitters on Si(111). MRS fall meeting. Boston, I4.7

    Google Scholar 

  • Dadgar A, Alam A, Christen J, Riemann T, Richter S, Bläsing J, Diez A, Heuken M, Krost A (2001c) Bright blue electroluminescence from an InGaN/GaN multiquantum-well diode on Si(111): Impact of an AlGaN/GaN multilayer. Appl Phys Lett 78:2211

    Article  Google Scholar 

  • Dadgar A, Poschenrieder M, Contreras O, Christen J, Fehse K, Bläsing J, Diez A, Schulze F, Riemann T, Ponce FA, Krost A (2002a) Bright, Crack-Free InGaN/GaN Light Emitters on Si(111). Phys Status Solidi A 192:308

    Article  Google Scholar 

  • Dadgar A, Poschenrieder M, Bläsing J, Fehse K, Diez A, Krost A (2002b) Thick, crack-free blue light-emitting diodes on Si(111) using low-temperature AlN interlayers and in situ SixNy masking. Appl Phys Lett 80:3670

    Article  Google Scholar 

  • Dadgar A, Strittmatter A, Bläsing J, Poschenrieder M, Contreras O, Veit P, Riemann T, Bertram F, Reiher A, Krtschil A, Diez A, Hempel T, Finger T, Kasic A, Schubert M, Bimberg D, Ponce FA, Christen J, Krost A (2003) Metalorganic chemical vapor phase epitaxy of gallium-nitride on silicon. Phys Status Solidi C 0:1583

    Article  Google Scholar 

  • Dadgar A, Clos R, Strassburger G, Schulze F, Veit P, Hempel T, Bläsing J, Krtschil A, Daumiller I, Kunze M, Kaluza A, Modlich A, Kamp M, Diez A, Christen J, Krost A (2004) Strains and stresses in GaN heteroepitaxy – sources and control. In: Kramer B (ed) Advances in solid state physics, vol 44. Springer, Heidelberg, p 313

    Google Scholar 

  • Dadgar A, Hums C, Diez A, Bläsing J, Krost A (2006) Growth of blue GaN LED structures on 150 mm Si(111). J Cryst Growth 297:279

    Article  Google Scholar 

  • Dadgar A, Bläsing J, Diez A, Krost A (2011) Crack-Free, Highly Conducting GaN Layers on Si Substrates by Ge Doping. Appl Phys Exp 4:011001

    Article  Google Scholar 

  • Dadgar A, Fritze S, Schulz O, Hennig J, Bläsing J, Witte H, Diez A, Heinle U, Kunze M, Daumiller I, Haberland K, Krost A (2013) Anisotropic bow and plastic deformation of GaN on silicon. J Cryst Growth 370:278

    Article  Google Scholar 

  • de Almeida RMC, Baumvol IJR (2000) Reaction-diffusion model for thermal growth of silicon nitride films on Si. Phys Rev B 62, R16255

    Article  Google Scholar 

  • Dolmanan SB, Teo SL, Lin VK, Hui HK, Dadgar A, Krost A, Tripathy S (2011) Thin-film InGaN/GaN vertical light emitting diodes using GaN on silicon-on-insulator substrates. Electrochem Solid-State Lett 14:H460

    Article  Google Scholar 

  • Drechsel P (2014) Metallorganische Gasphasen-Epitaxie von Gruppe III-Nitrid-basierten LED Strukturen auf Silizium. PhD thesis, HU-Berlin, Dr. Hut, Munich, ISBN 978-3843917995

    Google Scholar 

  • Egawa T, Bin Abu Bakar Ahmad Shuhaimi (2010) High performance InGaN LEDs on Si (111) substrates grown by MOCVD. J Phys D Appl Phys 43:354008

    Google Scholar 

  • Egawa T, Zhang B, Nishikawa N, Ishikawa H, Jimbo T, Umeno M (2002) InGaN multiple-quantum-well green light-emitting diodes on Si grown by metalorganic chemical vapor deposition. J Appl Phys 91:528

    Article  Google Scholar 

  • Feltin E, Dalmasso S, de Mierry P, Beaumont B, Lahrèche H, Bouillé A, Haas H, Leroux M, Gibart P (2001) Green InGaN Light-Emitting Diodes Grown on Silicon (111) by Metalorganic Vapor Phase Epitaxy. Jpn J Appl Phys 40:L738

    Article  Google Scholar 

  • Fischer AM, Wu Z, Sun K, Wie Q, Huang Y, Senda R, Iida D, Iwaya M, Amano H, Ponce F (2009) Misfit Strain Relaxation by Stacking Fault Generation in InGaN Quantum Wells Grown on m-Plane GaN. Appl Phys Exp 2:041002

    Article  Google Scholar 

  • Fritze S, Drechsel P, Stauss P, Rode P, Markurt T, Schulz T, Albrecht M, Bläsing J, Dadgar A, Krost A (2012a) J Appl Phys 111:124505

    Article  Google Scholar 

  • Fritze S, Dadgar A, Witte H, Bügler M, Rohrbeck A, Bläsing J, Hoffmann A, Krost A (2012b) Role of low-temperature AlGaN interlayers in thick GaN on silicon by metalorganic vapor phase epitaxy. Appl Phys Lett 100:122104

    Article  Google Scholar 

  • Guha S, Bojarczuk NA (1998a) Ultraviolet and violet GaN light emitting diodes on silicon. Appl Phys Lett 72:415

    Article  Google Scholar 

  • Guha S, Bojarczuk NA (1998b) Multicolored light emitters on silicon substrates. Appl Phys Lett 73:1487

    Article  Google Scholar 

  • Haerle V, Hahn B, Kaiser S, Weimar A, Bader S, Eberhard F, Plössl A, Eisert D (2004) High brightness LEDs for general lighting applications Using the new ThinGaN™ Technology. Phys Status Solidi A 201(12):2736

    Google Scholar 

  • Hikosaka T, Honda Y, Yamaguchi M, Sawaki N (2007) Al doping in (1−101)GaN films grown on patterned (001)Si substrate. J Appl Phys 101:103513

    Article  Google Scholar 

  • Honda Y, Kuroiwa Y, Yamaguchi M, Sawaki N (2002) Growth of GaN free from cracks on a (111) Si substrate by selective metalorganic vapor-phase epitaxy. Appl Phys Lett 80:222

    Article  Google Scholar 

  • Honda Y, Kato S, Yamaguchi M, Sawaki N (2007) Series resistance in a GaN/AlGaN/n-Si structure grown by MOVPE. Phys Status Solidi C 4:2740

    Article  Google Scholar 

  • Hsu L, Walukiewicz W (2008) Modeling of InGaN/Si tandem solar cells. J Appl Phys 104:024507

    Article  Google Scholar 

  • Ishigawa H, Zhao GY, Nakada N, Egawa T, Soga T, Jimbo T, Umeno M (1999a) High-Quality GaN on Si Substrate Using AlGaN/AlN Intermediate Layer. Phys Status Solidi A 176:599

    Article  Google Scholar 

  • Ishigawa H, Zhao G-Y, Nakada N, Egawa T, Jimbo T, Umeno M (1999b) GaN on Si Substrate with AlGaN/AlN Intermediate Layer. Jpn J Appl Phys 38:L492

    Article  Google Scholar 

  • Ishikawa H, Yamamoto K, Egawa T, Soga T, Jimbo T, Umeno M (1998) Thermal stability of GaN on (111) Si substrate. J Cryst Growth 189–190:178

    Article  Google Scholar 

  • Ishikawa H, Zhang B, Egawa T, Jimbo T (2003) Valence-Band Discontinuity at the AlN/Si Interface. Jpn J Appl Phys 42:6413

    Article  Google Scholar 

  • Ishikawa H, Asano K, Zhang B, Egawa T, Jimbo T (2004a) Improved characteristics of GaN-based light-emitting diodes by distributed Bragg reflector grown on Si. Phys Status Solidi A 201:2653

    Google Scholar 

  • Ishikawa H, Zhang B, Asano K, Egawa T, Jimbo T (2004b) Characterization of GaInN light-emitting diodes with distributed Bragg reflector grown on Si. J Cryst Growth 272:322

    Article  Google Scholar 

  • Ishikawa H, Jimbo T, Egawa T (2008) GaInN light emitting diodes with AlInN/GaN distributed Bragg reflector on Si. Phys Status Solidi C 5:2086

    Article  Google Scholar 

  • Jiang F, Wang L, Wang X, Mo C, You X, Zheng C, Liu W, Zhou Y, Xiong C, Tang Y, Fang W, Lu B (2009) H7, 8th international conference on nitride semiconductors (ICNS-8), Jeju

    Google Scholar 

  • Kikuchi A, Kawai M, Tada M, Kishino K (2004) InGaN/GaN Multiple Quantum Disk Nanocolumn Light-Emitting Diodes Grown on (111) Si Substrate. Jpn J Appl Phys 43:L 1524

    Article  Google Scholar 

  • Kim M-H, Do Y-G, Kang HC, Noh DY, Park S-J (2001) Effects of step-graded AlxGa1−xN interlayer on properties of GaN grown on Si(111) using ultrahigh vacuum chemical vapor deposition. Appl Phys Lett 79:2713

    Article  Google Scholar 

  • Krost A, Dadgar A (2002) GaN-based optoelectronics on Silicon substrates. Mater Sci Eng B93:77

    Article  Google Scholar 

  • Kuzmík J, Bychikhin S, Neuburger M, Dadgar A, Krost A, Kohn E, Pogany D (2005) Transient thermal characterization of AlGaN/GaN HEMTs grown on silicon. IEEE Trans Electron Dev 52:1698

    Article  Google Scholar 

  • Li J, Lin JY, Jiang HX (2006) Growth of III-nitride photonic structures on large area silicon substrates. Appl Phys Lett 88:171909

    Article  Google Scholar 

  • Li T, Mastro M, Dadgar A (eds) (2010) III–V compound semiconductors: integration with silicon-based microelectronics. CRC-Press, Boca Raton, Florida, USA, ISBN 978-1439815229

    Google Scholar 

  • Lin VKX, Tripathy S, Teo SL, Dolmanan SB, Dadgar A, Noltemeyer M, Franke A, Bertram F, Christen J, Krost A (2010) Luminescence Properties of Photonic Crystal InGaN/GaN Light Emitting Layers on Silicon-on-Insulator. Electrochem Solid-State Lett 13:H343

    Article  Google Scholar 

  • Liu R, Ponce FA, Dadgar A, Krost A (2003) Atomic arrangement at the AlN/Si (111) interface. Appl Phys Lett 83:860

    Article  Google Scholar 

  • Marchand H, Zhang N, Zhao L, Golan Y, Rosner SJ, Girolami G, Fini PT, Ibbetson JP, DenBaars SP, Speck JS, Mishra UK (1999) Structural and optical properties of GaN laterally overgrown on Si(111) by metalorganic chemical vapor deposition using an AlN buffer layer. MRS Internet J Nitride Semicond Res 4:2

    Article  Google Scholar 

  • Murase T, Tanikawa T, Honda Y, Yamaguchi M, Amano H, Sawaki N (2011) Drastic Reduction of Dislocation Density in Semipolar (1122) GaN Stripe Crystal on Si Substrate by Dual Selective Metal–Organic Vapor Phase Epitaxy. Jpn J Appl Phys 50:01AD04

    Article  Google Scholar 

  • Narukawa Y, Narita J, Sakamoto T, Deguchi K, Yamada T, Mukai T (2006) Ultra-High Efficiency White Light Emitting Diodes. Jpn J Appl Phys 45:L1084

    Article  Google Scholar 

  • Narukawa Y, Ichikawa M, Sanga D, Sano M, Mukai T (2010) White light emitting diodes with super-high luminous efficacy. J Phys D Appl Phys 43:354002

    Article  Google Scholar 

  • Orita K, Takase Y, Fukushima Y, Usuda M, Ueda T, Takigawa S, Tanaka T, Ueda D, Egawa T (2008) Integration of Photonic Crystals on GaN-Based Blue LEDs Using Silicon Mold Substrates. IEEE J Quan Electron 44:984

    Article  Google Scholar 

  • OSRAM OS (2012) Press release “Success in research: first gallium-nitride LED chips on silicon in pilot stage”

    Google Scholar 

  • Ravash R, Bläsing J, Hempel T, Noltemeyer M, Dadgar A, Christen J, Krost A (2009) Metal organic vapor phase epitaxy growth of single crystalline GaN on planar Si(211) substrates. Appl Phys Lett 95:242101

    Article  Google Scholar 

  • Ravash R, Blaesing J, Dadgar A, Krost A (2010) Semipolar single component GaN on planar high index Si(11h) substrates. Appl Phys Lett 97:142102

    Article  Google Scholar 

  • Ravash R, Blaesing J, Hempel T, Noltemeyer M, Dadgar A, Christen J, Krost A (2011) Impact of AlN seeding layer growth rate in MOVPE growth of semi-polar gallium nitride structures on high index silicon. Phys Status Solidi B 248:594

    Article  Google Scholar 

  • Reiher A, Bläsing J, Dadgar A, Diez A, Krost A (2003) Efficient stress relief in GaN heteroepitaxy on Si(111) using low-temperature AlN interlayers. J Cryst Growth 248:563

    Article  Google Scholar 

  • Romanov AE, Baker TJ, Nakamura S, Speck JS (2006) Strain-induced polarization in wurtzite III-nitride semipolar layers. J Appl Phys 100:023522

    Article  Google Scholar 

  • Sawaki N, Honda Y (2011) Semi-polar GaN LEDs on Si substrate. Sci China Technol Sci 54:38

    Article  Google Scholar 

  • Schnitzer I, Yablonovitch E, Caneau C, Gmitter TJ, Scherer A (1993) 30% external quantum efficiency from surface textured, thin-film light-emitting diodes. Appl Phys Lett 63:2174

    Article  Google Scholar 

  • Schulze F, Dadgar A, Krtschil A, Hums C, Reissmann L, Diez A, Christen J, Krost A (2008) MOVPE growth of blue InxGa1–xN/GaN LEDs on 150 mm Si(001). Phys Status Solidi C 5:2238

    Article  Google Scholar 

  • Shaohua Z, Bo F, Qian S, Hanmin Z (2013) Preparation of GaN-on-Si based thin-film flip-chip LEDs. J Semicond 34:053006

    Article  Google Scholar 

  • Strittmatter A, Krost A, Straßburg M, Türck V, Bimberg D (1999) Low-pressure metal organic chemical vapor deposition of GaN on silicon(111) substrates using an AlAs nucleation layer. Appl Phys Lett 74:1242

    Article  Google Scholar 

  • Tanikawa T, Hikosaka T, Honda Y, Yamaguchi M, Sawaki N (2008a) Growth of semi-polar (11-22)GaN on a (113)Si substrate by selective MOVPE. Phys Status Solidi C 5:2966

    Article  Google Scholar 

  • Tanikawa T, Rudolph D, Hikosaka T, Honda Y, Yamaguchi M, Sawaki N (2008b) Growth of non-polar (11\( \overline{2} \)0)GaN on a patterned (110)Si substrate by selective MOVPE. J Cryst Growth 310:4999

    Google Scholar 

  • Tran CA, Osinski A, Karlicek RF Jr, Berishev I (1999) Growth of InGaN/GaN multiple-quantum-well blue light-emitting diodes on silicon by metalorganic vapor phase epitaxy. Appl Phys Lett 75:1494

    Article  Google Scholar 

  • Tripathy S, Dadgar A, Zang KY, Lin VKX, Liu YC, Teo SL, Yong AM, Soh CB, Chua SJ, Bläsing J, Christen J, Krost A (2009) GaN-based deep green light emitting diodes on silicon-on-insulator substrates. Phys Status Solidi C 6:S822

    Article  Google Scholar 

  • Umeno M, Egawa T, Ishikawa H (2001) GaN-based optoelectronic devices on sapphire and Si substrates. Mater Sci Semicond Process 4:459

    Article  Google Scholar 

  • Volz K, Stolz W, Dadgar A, and Krost A (2014) Growth of III/Vs on Silicon:Nitrides, Phosphides, Arsenides, and Antimonides in Handbook of Crystal Growth: Thin Films and Epitaxy, Tom Kuech editor, Elsevier, Amsterdam, NL, ISBN: 978-0444633040

    Google Scholar 

  • Waltereit P, Brandt O, Trampert A, Grahn HT, Menniger J, Ramsteiner M, Reiche M, Ploog KH (2000) Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 406:865

    Article  Google Scholar 

  • Wei J, Zhang B, Wang G, Fan B, Yang L, Rao W, Huang Z, Yang W, Chen T, Egawa T (2010) Vertical GaN-Based Light-Emitting Diodes Structure on Si(111) Substrate with Through-Holes. Jpn J Appl Phys 49:072104

    Article  Google Scholar 

  • Yablonovitch E (1987) Inhibited Spontaneous Emission in Solid-State Physics and Electronics. Phys Rev Lett 58:2059

    Article  Google Scholar 

  • Yamada M, Mitani T, Narukawa Y, Shioji S, Niki I, Sonobe S, Deguchi K, Sano M, Mukai T (2002) InGaN-Based Near-Ultraviolet and Blue-Light-Emitting Diodes with High External Quantum Efficiency Using a Patterned Sapphire Substrate and a Mesh Electrode. Jpn J Appl Phys 41:L1431

    Article  Google Scholar 

  • Yang JW, Lunev A, Simin G, Chitnis A, Shatalov M, Kahn MA, Van Nostrand JE, Gaska R (2000) Selective area deposited blue GaN–InGaN multiple-quantum well light emitting diodes over silicon substrates. Appl Phys Lett 76:273

    Article  Google Scholar 

  • Zhang B, Egawa T, Ishikawa H, Yang L, Jimbo T (2005) Thin-film InGaN multiple-quantum-well light-emitting diodes transferred from Si (111) substrate onto copper carrier by selective lift-off. Appl Phys Lett 86:071113

    Article  Google Scholar 

  • Zhang B, Liang H, Wang Y, Feng Z, Ng KW, Lau KM (2007) High-performance III-nitride blue LEDs grown and fabricated on patterned Si substrates. J Cryst Growth 298:725

    Article  Google Scholar 

  • Zou XB, Liang H, Lau KM (2010) Light extraction enhancement from GaN-based thin-film LEDs grown on silicon after substrate removal using HNA solution. Phys Status Solidi C 7:2171

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Dadgar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this entry

Cite this entry

Dadgar, A., Krost, A. (2017). LED Materials: GaN on Si. In: Karlicek, R., Sun, CC., Zissis, G., Ma, R. (eds) Handbook of Advanced Lighting Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-00176-0_11

Download citation

Publish with us

Policies and ethics