Skip to main content

Introductory Clifford Analysis

  • Living reference work entry
  • First Online:
Book cover Operator Theory

Abstract

In this chapter an introduction is given to Clifford analysis and the underlying Clifford algebras. The functions under consideration are defined on Euclidean space and take values in the universal real or complex Clifford algebra, the structure and properties of which are also recalled in detail. The function theory is centered around the notion of a monogenic function, which is a null solution of a generalized Cauchy–Riemann operator, which is rotation invariant and factorizes the Laplace operator. In this way, Clifford analysis may be considered as both a generalization to higher dimension of the theory of holomorphic functions in the complex plane and a refinement of classical harmonic analysis. A notion of monogenicity may also be associated with the vectorial part of the Cauchy–Riemann operator, which is called the Dirac operator; some attention is paid to the intimate relation between both notions. Since a product of monogenic functions is, in general, no longer monogenic, it is crucial to possess some tools for generating monogenic functions: such tools are provided by Fueter’s theorem on one hand and the Cauchy–Kovalevskaya extension theorem on the other hand. A corner stone in this function theory is the Cauchy integral formula for representation of a monogenic function in the interior of its domain of monogenicity. Starting from this representation formula and related integral formulae, it is possible to consider integral transforms such as Cauchy, Hilbert, and Radon transforms, which are important both within the theoretical framework and in view of possible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Bory-Reyes, J., Shapiro, M.: Clifford analysis versus its quaternionic counterparts. Math. Methods Appl. Sci. 33(9), 1089–1101 (2010)

    MathSciNet  Google Scholar 

  2. Brackx, F., De Schepper, H.: The Hilbert transform on a smooth closed hypersurface. Cubo 10(2), 83–106 (2008)

    MATH  MathSciNet  Google Scholar 

  3. Brackx, F., Sommen, F.: Clifford–Hermite wavelets in Euclidean space. J. Fourier Anal. Appl. 6(3), 299–310 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Pitman, London (1982)

    MATH  Google Scholar 

  5. Brackx, F., De Schepper, N., Sommen, F.: The Clifford–Fourier transform. J. Fourier Anal. Appl. 11, 669–681 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brackx, F., Bureš, J., De Schepper, H., Eelbode, D., Sommen, F., Souček, V.: Fundaments of Hermitian Clifford analysis—part I: complex structure. Compl. Anal. Oper. Theory 1(3), 341–365 (2007)

    Article  MATH  Google Scholar 

  7. Brackx, F., Bureš, J., De Schepper, H., Eelbode, D., Sommen, F., Souček, V.: Fundaments of Hermitian Clifford analysis—part II: splitting of h-monogenic equations. Compl. Var. Elliptic Equ. 52(10–11), 1063–1079 (2007)

    Article  MATH  Google Scholar 

  8. Brackx, F., De Schepper, H., Sommen, F.: The Hermitian Clifford analysis toolbox. Adv. Appl. Cliff. Alg. 18(3–4), 451–487 (2008)

    Article  MATH  Google Scholar 

  9. Brackx, F., De Schepper, H., Eelbode, D., Souček, V.: The Howe dual pair in Hermitian Clifford analysis. Rev. Mat. Iberoamericana 26(2), 449–479 (2010)

    Article  MATH  Google Scholar 

  10. Brackx, F., De Schepper, H., Lávička, R., Souček, V.: The Cauchy–Kovalevskaya extension theorem in Hermitian Clifford analysis. J. Math. Anal. Appl. 381(2), 649–660 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  11. Brackx, F., De Schepper, H., Lávička, R., Souček, V.: Gel’fand–Tsetlin bases of orthogonal polynomials in Hermitian Clifford analysis. Math. Methods Appl. Sci. 34, 2167–2180 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  12. Brackx, F., Eelbode, D., Van de Voorde, L.: The polynomial null solutions of a higher spin Dirac operator in two vector variables. Adv. Appl. Cliff. Alg. 21(3), 455–476 (2011)

    Article  MATH  Google Scholar 

  13. Brackx, F., Eelbode, D., Raeymaekers, T., Van de Voorde, L.: Triple monogenic functions and higher spin Dirac operators. Int. J. Math. 22(6), 759–774 (2011)

    Article  MATH  Google Scholar 

  14. Brauer, R., Weyl, H.: Spinors in n dimensions. Am. J. Math. 57, 425–449 (1935)

    Article  MathSciNet  Google Scholar 

  15. Bureš, J., Sommen, F., Souček, V., Van Lancker, P.: Rarita–Schwinger type operators in Clifford analysis. J. Funct. Anal. 185, 425–456 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Cauchy, A.: Oeuvres Completes, Série 1(VII). Gauthier-Villars, Paris (1882–1974)

    Google Scholar 

  17. Chevalley, C.: The Algebraic Theory of Spinors and Clifford Algebras (Collected works, Volume 2). Springer, Berlin (1997)

    Google Scholar 

  18. Clifford, W.K.: On the classification of geometric algebras. In: Tucker, R. (ed.) Mathematical Papers, pp. 397–401. MacMillan, London (1882)

    Google Scholar 

  19. Colombo, F., Sabadini, I., Sommen, F., Struppa, D.C.: Analysis of Dirac Systems and Computational Algebra. Progress in Mathematical Physics, vol. 39. Birkhäuser, Basel (2004)

    Google Scholar 

  20. Common, A.K., Sommen, F.: Axial monogenic functions from holomorphic functions. J. Math. Anal. Appl. 179(2), 610–629 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Cooke, R.: The Cauchy–Kovalevskaya Theorem (preprint, available online: http://www.cems.uvm.edu/~cooke/ckthm.pdf)

  22. Coulembier, K., De Bie, H.: Hilbert space for quantum mechanics on superspace. J. Math. Phys. 52, 063504, 30 pp. (2011)

    Google Scholar 

  23. Coulembier, K., De Bie, H., Sommen, F.: Integration in superspace using distribution theory. J. Phys. A 42, 395206, 23 pp. (2009)

    Google Scholar 

  24. Coulembier, K., De Bie, H., Sommen, F.: Orthosymplectically invariant functions in superspace. J. Math. Phys. 51, 083504, 23 pp. (2010)

    Google Scholar 

  25. Deans, S.R.: The Radon Transform and Some of Its Applications. Wiley-Interscience, New York (1983)

    MATH  Google Scholar 

  26. De Bie, H.: Fourier transform and related integral transforms in superspace. J. Math. Anal. Appl. 345, 147–164 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  27. De Bie, H.: Schrödinger equation with delta potential in superspace. Phys. Lett. A 372, 4350–4352 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. De Bie, H., Sommen, F.: A Clifford analysis approach to superspace. Ann. Phys. 322(12), 2978–2993 (2007)

    Article  MATH  Google Scholar 

  29. De Bie, H., Sommen, F.: Fundamental solutions for the super Laplace and Dirac operators and all their natural powers. J. Math. Anal. Appl. 338, 1320–1328 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Delanghe, R.: On regular-analytic functions with values in a Clifford algebra. Math. Ann. 185, 91–111 (1970)

    Article  MathSciNet  Google Scholar 

  31. Delanghe, R.: Clifford analysis: history and perspective. Comput. Methods Funct. Theory 1, 107–153 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  32. Delanghe, R., Sommen, F., Souček, V.: Clifford Algebra and Spinor-Valued Functions: A Function Theory for the Dirac Operator. Kluwer Academic, Dordrecht (1992)

    Book  MATH  Google Scholar 

  33. De Ridder, H., De Schepper, H., Kähler, U., Sommen, F.: Discrete function theory based on skew Weyl relations. Proc. Am. Math. Soc. 138, 3241–3256 (2010)

    Article  MATH  Google Scholar 

  34. De Ridder, H., De Schepper, H., Kähler, U., Sommen, F.: The Cauchy–Kovalevskaya Extension Theorem in Discrete Clifford Analysis. Commun. Pure Appl. Math. 10(4), 1097–1109 (2011)

    MATH  Google Scholar 

  35. De Ridder, H., De Schepper, H., Kähler, U., Sommen, F.: Fueter polynomials in discrete Clifford analysis. Math. Zeit. 272(1–2), 253–268 (2012)

    Article  MATH  Google Scholar 

  36. De Schepper, H., Sommen, F., Van de Voorde, L.: A basic framework for discrete Clifford analysis. Exp. Math. 18(4), 385–395 (2009)

    Article  MATH  Google Scholar 

  37. De Schepper, H., Eelbode, D., Raeymaekers, T.: On a special type of solutions of arbitrary higher spin Dirac operators. J. Phys. A 43(32), 1–13 (2010)

    Article  Google Scholar 

  38. Dirac, P.A.M.: The quantum theory of the electron I–II. Proc. R. Soc. Lond. A117, 610–524 (1928); A118, 351–361 (1928)

    Google Scholar 

  39. Eelbode, D., Raeymaekers, T., Van Lancker, P.: On the fundamental solution for higher spin Dirac operators. J. Math. Anal. Appl. 405(2), 555–564 (2013)

    Article  MathSciNet  Google Scholar 

  40. Faustino, N., Kähler, U.: Fischer decomposition for difference Dirac operators. Adv. Appl. Cliff. Alg. 17(1), 37–58 (2007)

    Article  MATH  Google Scholar 

  41. Fueter, R.: Zur Theorie der regulären Funktionen einer Quaternionenvariablen. Monat. für Math. und Phys. 43, 69–74 (1935)

    Article  MathSciNet  Google Scholar 

  42. Fueter, R.: Die funktionentheorie der differentialgleichungen \(\Delta u = 0\) und Eq\(\Delta \Delta u = 0\) mit vier variablen. Commun. Math. Helv. 7, 307–330 (1935)

    Article  MathSciNet  Google Scholar 

  43. Gel’Fand, I.M., Gindikin, S.G., Graev, M.I.: Integral geometry in affine and projective spaces. J. Sov. Math. 18, 39–67 (1980)

    Article  Google Scholar 

  44. Gilbert, J., Murray, M.: Clifford Algebra and Dirac Operators in Harmonic Analysis. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  45. Gürlebeck, K., Hommel, A.: On finite difference potentials and their applications in a discrete function theory. Math. Methods Appl. Sci. 25, 1563–1576 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  46. Gürlebeck, K., Hommel, A.: On finite difference Dirac operators and their fundamental solutions. Adv. Appl. Cliff. Alg. 11, 89–106 (2003)

    Article  Google Scholar 

  47. Gürlebeck, K., Sprößig, W.: Quaternionic and Clifford Calculus for Physicists and Engineers. Wiley, Chichester (1997)

    MATH  Google Scholar 

  48. Gürlebeck, K., Habetha, K., Sprößig, W.: Holomorphic Functions in the Plane and n -dimensional Space. Birkhäuser, Basel (2008)

    MATH  Google Scholar 

  49. Hahn, S.L.: Hilbert Transforms in Signal Processing. Artech House, Boston (1996)

    MATH  Google Scholar 

  50. Helgason, S.: The Radon Transform. Birkhäuser, Boston (1980)

    Book  MATH  Google Scholar 

  51. Kowalevsky, S.: Zur Theorie der partiellen Differentialgleichung. J. für die Reine und Angew. Mathem. 80, 1–32 (1875)

    MATH  Google Scholar 

  52. Li, C., Mc Intosh, A., Qian, T.: Fourier transforms and singular convolution operators on Lipschitz surfaces. Rev. Math. Ibero. Am. 10, 665–721 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  53. Qian, T.: Generalization of Fueter’s result to \(\mathbb{R}^{n+1}\). Rend. Mat. Acc. Lincei 8, 111–117 (1997)

    Article  MATH  Google Scholar 

  54. Rocha-Chavez, R., Shapiro, M., Sommen, F.: Integral Theorems for Functions and Differential Forms in \(\mathbb{C}_{m}\). Research Notes in Math., vol. 428, Chapman & Hall/CRC, New York (2002)

    Google Scholar 

  55. Ryan, J.: Basic Clifford analysis. Cubo Math. Educ. 2, 226–256 (2000)

    MATH  Google Scholar 

  56. Sabadini, I., Sommen, F.: Hermitian Clifford analysis and resolutions. Math. Methods Appl. Sci. 25(16–18), 1395–1414 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  57. Sce, M.: Osservazioni sulle serie di potenze nei moduli quadratici. Atti. Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. 23(8), 220–225 (1957)

    MathSciNet  Google Scholar 

  58. Sommen, F.: Plane wave decompositions of monogenic functions. Ann. Pol. Math. 49, 101–114 (1988)

    MATH  MathSciNet  Google Scholar 

  59. Sommen, F.: Clifford analysis and integral geometry. In: Proceedings of Second Workshop on Clifford Algebras, pp. 293–311. Kluwer Academic, Dordrecht (1992)

    Google Scholar 

  60. Sommen, F.: Clifford analysis and integral geometry. In: Micali, A., et al. (eds.) Clifford Algebras and Their Applications in Mathematical Physics. Fund. Theories Phys. vol. 47, pp. 293–311. Kluwer Academic, Dordrecht (1992)

    Chapter  Google Scholar 

  61. Stein, E.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Sommen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Basel

About this entry

Cite this entry

Sommen, F., Schepper, H.D. (2014). Introductory Clifford Analysis. In: Alpay, D. (eds) Operator Theory. Springer, Basel. https://doi.org/10.1007/978-3-0348-0692-3_29-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-0348-0692-3_29-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Basel

  • Online ISBN: 978-3-0348-0692-3

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics