Abstract
This chapter focuses on the use of Clifford analysis techniques as an encompassing and unifying tool to study higher spin generalizations of the classical Dirac operator. These operators belong to a complete family of conformally invariant first-order differential operators, acting on functions taking their values in an irreducible representation for the spin group (the double cover for the orthogonal group). Their existence follows from a standard classification result due to Fegan (Q. J. Math. 27:513–538, 1976), and a canonical way to construct them is to use the technique of Stein–Weiss gradients. This then gives rise to two kinds of differential operators defined on irreducible tensor fields, the standard language used in, e.g., theoretical physics, where higher spin operators appear in the equations of motion for elementary particles having arbitrary half-integer spin: on the one hand, there are the (elliptic) generalizations of the Dirac operator, acting as endomorphisms on the space of smooth functions with values in a fixed module (i.e., preserving the values), and on the other hand there are the invariant operators acting between functions taking values in different modules for the spin group (the so-called twistor operators and their duals). In this chapter, both types of higher spin operators will be defined on spinor-valued functions of a matrix variable (i.e., in several vector variables): this has the advantage that the resulting equations become more transparent, and it allows using techniques for Clifford analysis in several variables. In particular, it provides an elegant framework to develop a function theory for the aforementioned operators, such as a full description of the (polynomial) null solutions and analogues of the classical Cauchy integral formula.
Similar content being viewed by others
References
Ahlfors, L.: Mobius transformations in \(\mathbb{R}^{n}\) expressed through 2 × 2 matrices of Clifford numbers. Complex Var. 5, 215–224 (1986)
Brackx, F., Delanghe, R., Sommen, F.: Clifford Analysis. Research Notes in Mathematics, vol. 76. Pitman, London (1982)
Brackx, F., Eelbode, D., van de Voorde, L., Van Lancker, P.: On the fundamental solution and integral formulae of a higher spin operator in several vector variables. In: AIP Conference Proceedings, vol. 1281, pp.1519–1522 (2010)
Brackx, F., De Schepper, H., Krump, L., Souček, V.: Explicit Penrose transform for massless field equations of general spin in dimension four. In: ICNAAM 2011 AIP Conference Proceedings, vol. 1389, pp. 287–290 (2011)
Brackx, F., Eelbode, D., van de Voorde, L.: Higher spin Dirac operators between spaces of simplicial monogenics in two vector variables. Math. Phys. Anal. Geom. 14(1), 1–20 (2011)
Brackx, F., Eelbode, D., van de Voorde, L.: The polynomial null solutions of a higher spin Dirac operator in two vector variables. Adv. Appl. Clifford Algebras 21(3), 455–476 (2011)
Branson, T.: Stein-Weiss operators and ellipticity. J. Funct. Anal. 151(2), 334–383 (1997)
Bureš, J., Sommen, F., Souček, V., Van Lancker, P.: Rarita-Schwinger type operators in Clifford analysis. J. Funct. Anal. 185, 425–456 (2001)
Bureš, J., Sommen, F., Souček, V., Van Lancker, P.: Symmetric analogues of Rarita-Schwinger equations. Ann. Glob. Anal. Geom. 21(3), 215–240 (2001)
Colombo, F., Sabadini, I., Sommen, F., Struppa, D.: Analysis of Dirac systems and Computational Algebra. Progress in Mathematical Physics, vol. 39. Birkhaüser, Basel (2004)
Constales, D., Sommen. F., Van Lancker, P.: Models for irreducible representations of Spin( m ). Adv. Appl. Clifford Algebras 11(S1), 271–289 (2001)
De Bie, H.: Harmonic and Clifford analysis in superspace. PhD. Dissertation, Ghent University (2008)
Delanghe, R., Sommen, F., Souček, V.: Clifford analysis and spinor valued functions. Kluwer, Dordrecht (1992)
De Schepper, H., Eelbode, D., Raeymaekers, T.: On a special type of solutions of arbitrary higher spin Dirac operators. J. Phys. A 43(32), 1–13 (2010)
De Schepper, H., Eelbode, D., Raeymaekers, T.: Twisted higher spin Dirac operators. Complex. Anal. Oper. Theory (2013). doi:10.1007/s11785-013-0295-5
Eastwood, M.: Higher symmetries of the Laplacian. Ann. Math. 161, 1645–1665 (2005)
Eelbode, D., Raeymaekers, T., Van Lancker, P.: On the fundamental solution for higher spin Dirac operators. J. Math. Anal. Appl. 405, 555–564 (2013)
Eelbode, D., Souček, V.: Conformally invariant powers of the Dirac operator in Clifford analysis. Math. Meth. Appl. Sci. 33(13), 1558–1570 (2010)
Eelbode, D., Šmíd, D.: Factorization of Laplace operators on higher spin representations. Complex. Anal. Oper. Theory 6(5), 1011–1023 (2012)
Eelbode, D., Van Lancker, Total Rarita-Schwinger operators in Clifford analysis, Ann. Glob. Anal. Geom. 42, 473–493 (2012)
Fefferman, C., Graham, C.R.: Conformal invariants. In: Elie Cartan et les Mathématique d’aujourd’hui, Numéro hors série, pp. 95–116 (1985)
Fegan, H.D.: Conformally invariant first order differential operators. Q. J. Math. 27, 513–538 (1976)
Fischer, E.: Über die Differentiationsprozesse der Algebra. J. für Math. 148, 1–78 (1917)
Fulton, W., Harris, J.: Representation Theory: A First Course. Springer, New York (1991)
Gilbert, J., Murray, M.: Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambridge University Press, Cambridge (1991)
Gürlebeck, K., Sprössig, W.: Quaternionic Analysis and Elliptic Boundary Value Problems. ISNM, vol. 89. Birkhäuser, Basel (1990)
Holland, J., Sparling, G.: Conformally invariant powers of the ambient Dirac operator (2001). arXiv:math/0112033v2
Humphreys, J.: Introduction to Lie algebras and Representation Theory. Springer, New York (1972)
Latvamaa, E., Lounesto, P.: Conformal transformations and Clifford algebras. Proc. Am. Math. Soc. 79, 533–538 (1980)
Liu, H., Ryan, J.: Clifford analysis techniques for spherical PDE. J. Fourier Anal. Appl. 8(6), 535–563 (2002)
Miller, W. Jr.: Symmetry and Separation of Variables. Addison-Wesley, Massachusetts (1977)
Peetre, J., Qian, T.: Moebius covariance of iterated Dirac operators. J. Aust. Math. Soc. Ser. A 56, 1–12 (1994)
Penrose, R., Rindler, W.: Spinors and Space-Time, vols. 1 and 2. Cambridge University Press, Cambridge (1986)
Porteous, I.R.: Clifford Algebras and the Classical Groups. Cambridge Studies in Advanced Mathematics, vol. 50. Cambridge University Press, Cambridge (1995)
Qian, T., Ryan, J.: Conformal transformations and Hardy spaces arising in Clifford analysis. J. Oper. Theory 35, 349–372 (1996)
Rarita, W., Schwinger, J.: On a theory of particles with half-integer spin. Phys. Rev. 60, 61 (1941)
Slovak, J., Natural operators on conformal manifolds, PhD. Dissertation, Masaryk University, Brno (1993)
Šmíd, D.: Conformally invariant higher order higher spin operators on the sphere. AIP Conf. Proc. 1493, 911 (2012). doi:10.1063/1.4765596
Somberg P.: Twistor Operators on Conformally Flat Spaces. Suppl. ai Rend. del Circ. Matematico di Pal., Ser. II, Num. 66, 179–197 (2001)
Sommen, F., Van Acker, N.: Monogenic differential operators. Results Math. 22(3–4), 781–798 (1992)
Sommen, F., Van Acker, N.: Invariant differential operators on polynomial-valued functions. In: Clifford Algebras and Their Applications in Mathematical Physics. Fundamental Theories and Physics, vol. 55, pp. 203–212. Kluwer, Dordrecht (1993)
Souček, V.: Conformal invariance of higher spin equations. In: Proc. Symp. Analytical and Numerical Methods in Clifford Analysis, Seiffen, pp. 175–186 (1996)
Stein, E.W., Weiss, G.: Generalization of the Cauchy-Riemann equations and representations of the rotation group. Am. J. Math. 90, 163–196 (1968)
Tolstoy, V.N.: Extremal projections for reductive classical Lie superalgebras with a non-degenerate generalised Killing form. Russ. Math. Surv. 40, 241–242 (1985)
Van Lancker, P.: Higher spin fields on smooth domains. In: Clifford Analysis and Its Applications. NATO Science Series, vol. 25, pp. 389–398. Springer, Dordrecht (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer Basel
About this entry
Cite this entry
Eelbode, D. (2014). Clifford Analysis for Higher Spin Operators. In: Alpay, D. (eds) Operator Theory. Springer, Basel. https://doi.org/10.1007/978-3-0348-0692-3_23-1
Download citation
DOI: https://doi.org/10.1007/978-3-0348-0692-3_23-1
Received:
Accepted:
Published:
Publisher Name: Springer, Basel
Online ISBN: 978-3-0348-0692-3
eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering